Abstract:
A multi-chip module hybrid integrated circuit (MCM-HIC) provides cold spare support to an apparatus comprising a plurality of ICs and/or other circuits that are not cold spare compliant. At least one core IC and at least one cold spare chiplet are installed on an interconnecting substrate having a plurality of power zones to which power can be applied and withdrawn as needed. When powered, the cold spare chiplets serve as mediators and interfaces between the non cold spare compliant circuits. When the cold spare chiplets are at least partly unpowered, they protect all interconnected circuits, and ensure that interconnected circuits that remain powered are not hindered by unpowered interconnected circuits. Cold spare chiplets can extend across boundaries between power zones. External circuits can be exclusively interfaced to a subset of the power zones. Separate power circuits within a power zone can be sequenced during application and withdrawal of power.
Abstract:
A method for fabricating an electronic device package having a column grid array is disclosed. A column grid array package includes a substrate, an integrated circuit located on a first side of the substrate, and a set of solder columns located on a second side of the substrate. The column grid array package also includes multiple two-tab electronic devices located on the second side of the substrate. The heights of the two-tab electronic devices are substantially identical to the heights of the solder columns.
Abstract:
A method for manufacturing an electronic multi-chip module that involves stacking at least six tested devices to form the module. These devices may be individually tested prior to assembling the electronic module. After individually testing the devices, the devices may be stacked one on top of the other to form an electronic multi-chip module having at least six stacked devices. Other embodiments may be described and claimed.
Abstract:
A multi-chip module hybrid integrated circuit (MCM-HIC) provides cold spare support to an apparatus comprising a plurality of ICs and/or other circuits that are not cold spare compliant. At least one core IC and at least one cold spare chiplet are installed on an interconnecting substrate having a plurality of power zones to which power can be applied and withdrawn as needed. When powered, the cold spare chiplets serve as mediators and interfaces between the non cold spare compliant circuits. When the cold spare chiplets are at least partly unpowered, they protect all interconnected circuits, and ensure that interconnected circuits that remain powered are not hindered by unpowered interconnected circuits. Cold spare chiplets can extend across boundaries between power zones. External circuits can be exclusively interfaced to a subset of the power zones. Separate power circuits within a power zone can be sequenced during application and withdrawal of power.
Abstract:
A microwave module is described. The microwave module includes a base bracket, a window plate and a lid. The base bracket is configured to contain a photoconductive switch, a radio-frequency transformer and dielectric oil. The window plate, which is transparent to optical light, covers a first portion of the base bracket in which the photoconductive switch is located. The window plate is sealed to the base bracket. The lid, which includes a cutout to allow the radio-frequency transformer to pass through the lid, covers a second portion of the base bracket in which the radio-frequency transformer is located. The window plate is sealed to the base bracket, and the lid is sealed to the window plate, the base bracket and the radio-frequency transformer to contain the dielectric oil within the microwave module.
Abstract:
An apparatus for cooling electronic devices to be used in the vacuum of space is described. a window frame is provided as packaging for an electronic device having a substrate and a chip. The window frame includes an opening to allow a heat pipe to be in direct contact with a backside of the chip. The window frame is hermetically sealed to the backside of the chip. The window frame is also welded to a kovar ring located on the backside of the chip to provide a hermetic seal between the window frame and the substrate.
Abstract:
An electronic device package includes a substrate and wire columns arranged in groups about a neutral stress point of the substrate. The height of the wire columns is substantially uniform for the plural groups of wire columns, and a length of at least one of the wire columns is greater than the uniform height. A method of fabricating an electronic device package having a column grid array includes applying two templates on wire columns of the column grid array and bending at least one wire column to increase its length while maintaining a uniform height for the column grid array. In another aspect, an electronic device package substrate includes wire columns having at least one non-uniformity in lengths of the columns, and the length of a wire column corresponds to a distance of that wire column from the neutral stress point of the substrate. The non-uniformity of length in the wire columns reduces stress in the package leads after attachment of the package to a carrier substrate, such as a printed circuit board.
Abstract:
An electronic device package includes a substrate and wire columns arranged in groups about a neutral stress point of the substrate. The height of the wire columns is substantially uniform for the plural groups of wire columns, and a length of at least one of the wire columns is greater than the uniform height. A method of fabricating an electronic device package having a column grid array includes applying two templates on wire columns of the column grid array and bending at least one wire column to increase its length while maintaining a uniform height for the column grid array. In another aspect, an electronic device package substrate includes wire columns having at least one non-uniformity in lengths of the columns, and the length of a wire column corresponds to a distance of that wire column from the neutral stress point of the substrate. The non-uniformity of length in the wire columns reduces stress in the package leads after attachment of the package to a carrier substrate, such as a printed circuit board.