Abstract:
A process for continuous production of C2-C4-monoalkanolamines by reaction of a corresponding C2-C4-alkylene oxide with a molar excess of ammonia (NH3), wherein aqueous ammonia is employed, in the liquid phase and in the presence of an acidic cation exchanger as catalyst which contains a crosslinked copolymer comprising acidic functional groups as the carrier matrix, wherein the cation exchanger has a total exchange capacity of not less than 1.8 eq/L.
Abstract:
The present invention relates to a process for preparing ethyleneamines and/or alkanolamines, comprising the following steps: 1) reacting MEG with ammonia in the presence of hydrogen and an amination catalyst; 2) removing hydrogen and ammonia from the reaction output from stage 1, wherein the removal of hydrogen and ammonia in stage 2 comprises the following steps: 2-1) separating the reaction output from stage 1 into a gaseous phase comprising ammonia and hydrogen, and a liquid phase comprising ethyleneamines and/or alkanolamines, 2-2) passing the gaseous phase from stage 2-1) through one or more condensers to obtain one or more liquid phases in which ammonia has been enriched, and a gaseous phase in which hydrogen has been enriched, 2-3) contacting the gaseous phase from stage 2-2) with MEG so as to obtain a liquid phase comprising MEG and ammonia and a gaseous phase comprising hydrogen and optionally ammonia.
Abstract:
The present invention relates to a process for purifying adiponitrile (ADN), wherein crude ADN is introduced into a rectification apparatus (R1). The rectification apparatus (R1) comprises a first side draw and preferably also a second side draw, the first side draw being disposed below the crude ADN introduction point and the optional second side draw being disposed above the crude ADN introduction point. The first side draw is used to draw off a gaseous stream comprising ADN while the optional second side draw is used to draw off undesired by-products such as 1-amino-2-cyanocyclopentene (ACCP) which are often generated in ADN production and consequently may be present in the crude ADN. The gaseous stream from the first side draw of (R1) is introduced into a second rectification apparatus (R2). (R2) is used to separate off ADN from remaining high boilers and any other by-products present, pure ADN being drawn off from (D2) as overhead product. It is preferable when the process according to the invention employs crude ADN from a reaction of butadiene with hydrocyanic acid (HCN).
Abstract:
The invention relates to processes for preparing alkanolamines and ethyleneamines in the liquid phase, by reacting ethylene glycol and/or monoethanolamine with ammonia in the presence of an amination catalyst comprising one or more active metals selected from Sn and the elements of groups 8, 9, 10 and 11 of the Periodic Table of the Elements, wherein the amination catalyst is obtained by reductive calcination of a catalyst precursor. The catalyst precursor here is preferably prepared by contacting a conventional or catalytic support material with one or more soluble compounds of the active metals and optionally one or more soluble compounds of added catalyst elements. The present invention further relates to a process for preparing an amination catalyst comprising one or more active metals selected from Sn and the elements of groups 8, 9, 10 and 11 of the Periodic Table of the Elements, the amination catalyst being obtained by reductive calcination of a catalyst precursor, wherein the reactor in which the catalyst precursor is reductively calcined is connected to a denox plant, and to the use of a denox plant in the preparation of amination catalysts.
Abstract:
The present invention relates to an improved process for batchwise or continuous isomerization of cis-2-pentenenitrile to 3-pentenenitriles in the presence of 1,4-diazabicyclo[2.2.2]octane as catalyst.
Abstract:
The present invention relates to a process for preparing alkanolamines and ethyleneamines in the liquid phase, by reacting ethylene glycol and/or monoethanolamine with ammonia in the presence of an amination catalyst which is obtained by reducing a catalyst precursor, wherein the preparation of the catalyst precursor comprises a step a) in which a catalyst precursor comprising one or more catalytically active components of Sn, Cu and Ni, and a step b) in which the catalyst precursor prepared in step a) is contacted with a soluble Re compound.
Abstract:
The present invention relates to a two-stage hydroformylation process for producing pound of the formula (I) and to a process for producing a compound of the formula (V) comprising the two-stage hydroformylation process for producing a compound of the formula (I) followed by hydrogenation of the compound of the formula (I).
Abstract:
A process for the continuous preparation of adiponitrile by hydrocyanation of 3-pentenenitrile is described, wherein a) 3-pentenenitrile is hydrocyanated to give a reaction output comprising adiponitrile, b) in a work-up 1, a mixture comprising cis-2-methyl-2-butenenitrile and cis-2-pentenenitrile is separated off as overhead product from the reaction output from the reactor R1 in a first distillation apparatus, c) the mixture comprising cis-2-methyl-2-butenenitrile and cis-2-pentenenitrile from step b) is continuously isomerized in the presence of aluminum oxide as catalyst in a reactor R2 to give a product mixture comprising 3-pentenenitrile, d) cis-2-methyl-2-butenenitrile is separated off as overhead product from the reaction output from the reactor R2 in a distillation apparatus in a work-up 2 and discharged.
Abstract:
The present invention relates to a process for purifying adiponitrile (ADN), wherein crude ADN is introduced into a rectification apparatus (R1). The rectification apparatus (R1) comprises a first side draw and preferably also a second side draw, the first side draw being disposed below the crude ADN introduction point and the optional second side draw being disposed above the crude ADN introduction point. The first side draw is used to draw off a gaseous stream comprising ADN while the optional second side draw is used to draw off undesired by-products such as 1-amino-2-cyanocyclopentene (ACCP) which are often generated in ADN production and consequently may be present in the crude ADN. The gaseous stream from the first side draw of (R1) is introduced into a second rectification apparatus (R2). (R2) is used to separate off ADN from remaining high boilers and any other by-products present, pure ADN being drawn off from (D2) as overhead product. It is preferable when the process according to the invention employs crude ADN from a reaction of butadiene with hydrocyanic acid (HCN).
Abstract:
A process is described for preparing 3-pentenenitrile, characterized by the following process steps: (a) isomerizing a reactant stream which comprises 2-methyl-3-butenenitrile over at least one dissolved or dispersed isomerization catalyst to give a stream 1 which comprises the at least one isomerization catalyst, 2-methyl-3-butenenitrile, 3-pentenenitrile and (Z)-2-methyl-2-butenenitrile, (b) distilling stream 1 to obtain a stream 2 as the top product which comprises 2-methyl-3-butenenitrile, 3-pentenenitrile and (Z)-2-methyl-2-butenenitrile, and a stream 3 as the bottom product which comprises the at least one isomerization catalyst, (c) distilling stream 2 to obtain a stream 4 as the top product which, compared to stream 2, is enriched in (Z)-2-methyl-2-butenenitrile, based on the sum of all pentenenitriles in stream 2, and a stream 5 as the bottom product which, compared to stream 2, is enriched in 3-pentenenitrile and 2-methyl-3-butenenitrile, based on the sum of all pentenenitriles in stream 2, (d) distilling stream 5 to obtain a stream 6 as the bottom product which comprises 3-pentenenitrile and a stream 7 as the top product which comprises 2-methyl-3-butenenitrile.