Abstract:
FIG. 1 is a perspective view of the claimed design for a radio frequency aperture; and, FIG. 2 is a top plan view thereof. The broken lines immediately adjacent to the claimed area depict boundaries of the claimed design and form no part thereof. The broken lines showing the remainder of the radio frequency aperture depict environmental structure and form no part of the claimed design.
Abstract:
A radio frequency (RF) aperture includes an interface board. An array of electrically conductive tapered projections have bases disposed on a front side of the interface printed circuit board and extend away from the front side of the interface printed circuit board. RF circuitry is disposed at the back side of the interface board and is electrically connected with the electrically conductive tapered projections.
Abstract:
A device is described in which the shape of a resistive heater material is configured to provide rapid and strong heating of a small area. The resistive heating material is heated unevenly while efficiently using power.
Abstract:
A radio frequency (RF) aperture includes an interface board. An array of electrically conductive tapered projections have bases disposed on a front side of the interface printed circuit board and extend away from the front side of the interface printed circuit board. RF circuitry is disposed at the back side of the interface board and is electrically connected with the electrically conductive tapered projections.
Abstract:
A radio frequency (RF) aperture includes an interface board. An array of electrically conductive tapered projections have bases disposed on a front side of the interface printed circuit board and extend away from the front side of the interface printed circuit board. RF circuitry is disposed at the back side of the interface board and is electrically connected with the electrically conductive tapered projections.
Abstract:
Core annular flow is used to enable the subcutaneous delivery of a viscous fluid such as a protein therapeutic formulation. The high-viscosity fluid is surrounded by a low-viscosity fluid, and the low-viscosity fluid lubricates the passage of the high-viscosity fluid. This allows the use of protein formulations that have a higher concentration and a higher viscosity at comparatively reduced injection forces and reduced injection times. Several different embodiments of injection devices that provide core annular flow are described herein.
Abstract:
In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.
Abstract:
A radio frequency (RF) aperture includes an interface board. An array of electrically conductive tapered projections have bases disposed on a front side of the interface printed circuit board and extend away from the front side of the interface printed circuit board. RF circuitry is disposed at the back side of the interface board and is electrically connected with the electrically conductive tapered projections.
Abstract:
Core annular flow is used to enable the subcutaneous delivery of a viscous fluid such as a protein therapeutic formulation. The high-viscosity fluid is surrounded by a low-viscosity fluid, and the low-viscosity fluid lubricates the passage of the high-viscosity fluid. This allows the use of protein formulations that have a higher concentration and a higher viscosity at comparatively reduced injection forces and reduced injection times. Several different embodiments of injection devices that provide core annular flow are described herein.