Abstract:
The disclosure pertains to an intravascular catheter for nerve modulation. The catheter includes an elongate member having a proximal end and a distal end, and an inflatable balloon secured adjacent to the distal end of the elongate member. The balloon includes an exterior surface and an interior surface defining a lumen. The lumen includes a section that is permeable to radiofrequency (RF) radiation. The section extends from the interior surface of the balloon to the exterior surface of the balloon. A first electrode is disposed within the inflatable balloon and indifferent electrodes are disposed external to the inflatable balloon.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a guide extension catheter. The guide extension catheter may include a proximal member having a proximal outer diameter. A removable stiffening member may be disposed adjacent to the proximal member. A distal sheath member may be attached to the proximal member. The distal sheath member may have a distal outer diameter greater than the proximal outer diameter.
Abstract:
Guide extension catheters and methods of manufacturing and using guide extension catheters are disclosed. An example guide extension catheter may include a distal sheath having a proximal opening, a distal opening, and a central lumen extending therebetween. The guide extension catheter may also include a proximal shaft having an outer diameter smaller than an outer diameter of the distal sheath, the proximal shaft including a distal opening. The guide extension catheter may also include a coupling member for securing the distal sheath to the proximal shaft. The coupling member may include a distal portion attached to the distal sheath and a proximal portion disposed within the distal opening of the proximal shaft.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a guide extension catheter. The guide extension catheter may include a push member having a proximal portion with a proximal stiffness, a distal portion with a distal stiffness different from the proximal stiffness, and a transition portion disposed between the proximal portion and the distal portion. The transition portion may provide a smooth transition between the proximal stiffness and the distal stiffness. The push member may have a first outer diameter. A distal tubular member may be attached to the push member. The distal tubular member may have a second outer diameter larger than the first outer diameter.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a guide extension catheter. The guide extension catheter may include a proximal member having a proximal outer diameter. A distal sheath member may be attached to the proximal member. The distal sheath member may have a distal outer diameter greater than the proximal outer diameter. The distal sheath member may have a proximal end, a distal end, and a longitudinal slit extending at least partially between the proximal end and the distal end. An expandable member may be attached to the distal sheath member and may extend along the longitudinal slit. The expandable member may be configured to shift between a first configuration and an expanded configuration.
Abstract:
Ablative catheters and methods for making and using the same are disclosed. The catheter may have a proximal end, a distal end, and a first lumen extending at least partially between the proximal and distal ends. The catheter may include at least one ablative port located adjacent to the distal end of the catheter. The catheter may include an ablative mechanism capable of ablation using an conductive fluid circulated to the ablative port through the first lumen. An expandable member may be disposed at an outer surface of a distal portion of the catheter. The expandable member may be capable of switching between a collapsed position and an expanded position using an expansion fluid circulated to the expandable member through a second lumen. In the expanded position, the expandable member may be sized and shaped to position the ablative port at a suitable distance from a wall of the vessel.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a guide extension catheter. The guide extension catheter may include a push member having a proximal portion with a proximal stiffness, a distal portion with a distal stiffness different from the proximal stiffness, and a transition portion disposed between the proximal portion and the distal portion. The transition portion may provide a smooth transition between the proximal stiffness and the distal stiffness. The push member may have a first outer diameter. A distal tubular member may be attached to the push member. The distal tubular member may have a second outer diameter larger than the first outer diameter.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a medical device for modulating nerves. The medical device may include an elongate shaft having a distal region. Two or more electrodes may be positioned adjacent to the distal end region of the elongate shaft. A control unit may supply power and control algorithms to the electrodes. The control algorithm may allow the electrodes to be operated simultaneously and individually.
Abstract:
A recanalization catheter for facilitating re-entry into a lumen of a blood vessel from a subintimal space. The recanalization catheter includes first and second mechanically actuatable wings positioned at a distal region of the elongate shaft of the catheter that are actuatable between a retracted position and an expanded position. In the retracted position the mechanically actuatable wings are positioned in first and second elongate channels defined in the elongate shaft, and in the expanded position the mechanically actuatable wings extend outward from the first and second elongate channels. The actuatable wings extend in an arcuate path away from the elongate shaft in the expanded position to be positionable in a circumferential orientation within a subintimal space formed in a vessel wall to automatically orient a lateral port of the elongate shaft toward the true lumen.
Abstract:
Some embodiments are directed to medical devices and methods for making and using the medical devices. An exemplary medical device includes a catheter having an elongated shaft and an inflatable balloon mounted at or on a distal portion of the elongated shaft. The catheter further includes a first electrically conductive blade, and a second electrically conductive blade. Each blade may be configured to contact tissue upon inflation of the balloon. The blades may contact the tissue with reduced or minimal incising of the tissue, or even without incising the tissue, within a body lumen. Thermal energy may be applied to the tissue upon electrical energy being applied to the respective blades.