Abstract:
A wireless communication device (e.g., generally, a device) includes a communication interface and a processor configured to support communications with one or more other devices. In an example of operation, the device supports first communications based on a first communication protocol with a first network coordinator device and identifies a second network coordinator device that operates based on a second communication protocol when supporting those first communications. The device also determines one or more operational parameters associated with the second network coordinator device. When one or more conditions is/are appropriate, the device interworks the first communications and second communications based on the second communication protocol with the second network coordinator device. The degree of interworking is based on one or more considerations associated with one or more of the first and second communication protocols, the first and second network coordinator devices, local and/or remote operating conditions, etc.
Abstract:
A communication device configured to route communications between one or more out-of-coverage communication devices using one or more proximity services (ProSe). For example, the communication device can be configured as a mobile device-to network relay. The communication device can be configured to route communications associated with one more out-of-coverage communication devices that are serviced by the communication device. The communication device can be configured to utilize Layer 3 routing.
Abstract:
A communication device configured to provide Web real-time communication (WebRTC) for internet protocol (IP) multimedia services utilizing one or more 3GPP protocols. The communication device can be configured to authenticate communication with one or more clients using one or more IP Multimedia Subsystem (IMS) credentials. The communication device can also be configured to convert communications between WebRTC and 3GPP protocols utilizing Traversal Using Relays around Network Address Translation (TURN) functionality implemented within the communication device.
Abstract:
A communication device configured to provide Web real-time communication (WebRTC) for interne protocol (IP) multimedia services utilizing one or more 3GPP protocols. The communication device can be configured to authenticate communication with one or more clients using one or more IP Multimedia Subsystem (IMS) credentials. The communication device can also be configured to convert communications between WebRTC and 3GPP protocols utilizing Traversal Using Relays around Network Address Translation (TURN) functionality implemented within the communication device.
Abstract:
Various methods and systems are provided for space, frequency and time domain coexistence of RF signals. In one example, among others, a communication device includes a coexistence manager capable of monitoring operating conditions of a cellular modem and a coexistence assistant capable of monitoring operating conditions of a wireless connectivity unit. The coexistence manager is capable of modifying operation of the modem and/or unit based on an operating condition change. In another example, a method includes detecting a change in antenna isolation and/or operating temperature of a FE filter, determining filtering characteristics of the FE filter based at least in part upon the change, and modifying communications of coexisting communication protocols based at least in part upon the filtering characteristics. In another example, a TX/RX configuration for coexisting communication protocols is determined and communications in a protocol is modified based at least in part upon the TX/RX configuration.
Abstract:
Various methods and systems are provided for time domain coexistence of RF signals. In one example, among others, a method includes obtaining access to a WLAN channel during a free period of a coexisting cellular connection, providing a RDG to allow another device to transmit for a duration corresponding to at least a portion of a TXOP, and receiving a transmission during the duration. In another example, a method includes obtaining access to a WLAN channel during a transmission period of a coexisting cellular connection and providing a protection frame to defer transmissions from another device for a duration corresponding to at least a portion of a TXOP. In another example, a method includes determining a shift of a BT transaction based at least in part upon a schedule of cellular communications and shifting at least a portion of the BT transaction based upon the determined shift.
Abstract:
The present disclosure is directed to methods and system for managing communication of packets. A transceiver node receives a plurality of IP data packets from an internet protocol (IP) network. The transceiver node separates the IP data packets into a first set and a second set of IP data packets, according to channel conditions of a cellular network and a wireless local area network (WLAN). The transceiver node transmits, to a user device, the first set of IP data packets using a cellular network protocol of the cellular network and the second set of IP data packets using a WLAN protocol of the WLAN, causing the user device to aggregate the first set of IP data packets transmitted using the cellular network protocol with the second set of IP data packets transmitted using the WLAN protocol.
Abstract:
A communication device configured to route communications between one or more out-of-coverage communication devices using one or more proximity services (ProSe). For example, the communication device can be configured as a mobile device-to network relay. The communication device can be configured to route communications associated with one more out-of-coverage communication devices that are serviced by the communication device. The communication device can be configured to utilize Layer 3 routing.
Abstract:
A communication device configured to route communications between one or more out-of-coverage communication devices and a base station using one or more proximity services (ProSe). For example, the communication device can be configured as a mobile device-to network relay. The communication device can be configured to route communications between two or more out-of-coverage communication devices that are serviced by the communication device. The communication device can be configured to utilize Layer 3 and/or internet protocol (IP) routing. A base station can be configured to route communications between two or communication devices serviced by the base station. The base station can also be communication coupled to another base station via a backhaul communication connection, and be configured to route communications from one or more communication devices serviced by the base station to one or more other communication devices serviced by the other base station via the backhaul communication connection.
Abstract:
Various methods and systems are provided for space, frequency and time domain coexistence of RF signals. In one example, among others, a communication device includes a coexistence manager capable of monitoring operating conditions of a cellular modem and a coexistence assistant capable of monitoring operating conditions of a wireless connectivity unit. The coexistence manager is capable of modifying operation of the modem and/or unit based on an operating condition change. In another example, a method includes detecting a change in antenna isolation and/or operating temperature of a FE filter, determining filtering characteristics of the FE filter based at least in part upon the change, and modifying communications of coexisting communication protocols based at least in part upon the filtering characteristics. In another example, a TX/RX configuration for coexisting communication protocols is determined and communications in a protocol is modified based at least in part upon the TX/RX configuration.