Abstract:
The present invention relates to a process for manufacturing polyethylene-silane-copolymer conducted in a plant including at least one compressor unit and at least one reactor downstream of the compressor unit. The process includes the steps of (a) feeding a first feed stream including ethylene into the at least one compressor unit and subsequently to the at least one reactor, and (b1) feeding a second feed stream including at least one silane comonomer to the at least one reactor as front feed and/or (b2) feeding a second feed stream including at least one silane comonomer to the at least one reactor at at least one location along the reactor.
Abstract:
The present invention provides a process for manufacturing polyethylene-diene-copolymer conducted in a plant including at least one compressor unit, at least one preheater unit downstream of the compressor unit and at least one reactor, in particular a reactor, downstream of the compressor unit and the preheater unit. The process comprising the steps of (a) feeding a first feed stream comprising ethylene into the at least one compressor unit and subsequently into the at least one preheater unit, and (b1) feeding a second feed stream including at least one diene comonomer to the first feed stream leaving the at least preheater unit, and feeding the combined feed streams including ethylene and the at least one diene comonomer to the at least one reactor, and/or (b2) feeding a second feed stream including at least one diene comonomer to the at least one reactor at at least one location along the reactor.
Abstract:
The present invention relates to a catalyst masterbatch for cross-linking a polyolefin having cross-linkable silicon-containing groups. The catalyst masterbatch includes both of a Brønsted acid and/or Brønsted acid anhydride (A); and a polyolefin (B) containing Brønsted acid and/or Brønsted acid anhydride groups. The invention also encompasses compositions of a polyolefin having cross-linkable silicon-containing groups that include the catalyst masterbatch, use of the catalyst masterbatch in a cross-linking reaction of silicon-containing polyolefins, and a cable layer that includes a polymer made using the catalyst masterbatch.
Abstract:
The present invention provides a process for manufacturing polyethylene-diene-copolymer conducted in a plant including at least one compressor unit, at least one preheater unit downstream of the compressor unit and at least one reactor, in particular a reactor, downstream of the compressor unit and the preheater unit. The process comprising the steps of (a) feeding a first feed stream comprising ethylene into the at least one compressor unit and subsequently into the at least one preheater unit, and (b1) feeding a second feed stream including at least one diene comonomer to the first feed stream leaving the at least preheater unit, and feeding the combined feed streams including ethylene and the at least one diene comonomer to the at least one reactor, and/or (b2) feeding a second feed stream including at least one diene comonomer to the at least one reactor at at least one location along the reactor.
Abstract:
The present invention relates to a process for manufacturing polyethylene-silane-copolymer conducted in a plant including at least one compressor unit and at least one reactor downstream of the compressor unit. The process includes the steps of (a) feeding a first feed stream including ethylene into the at least one compressor unit and subsequently to the at least one reactor, and (b1) feeding a second feed stream including at least one silane comonomer to the at least one reactor as front feed and/or (b2) feeding a second feed stream including at least one silane comonomer to the at least one reactor at at least one location along the reactor.
Abstract:
The present invention relates to a polymer composition comprising a surfactant interacting additive, and wherein the polymer composition further comprises at least one silanol condensation catalyst, wherein each catalyst is selected from: i) a compound of formula I ArSO3H (I) or a precursor thereof, wherein Ar is an 1 to 4 alkyl groups substituted aryl, wherein the aryl is phenyl or naphthyl, and wherein each alkyl group, independently, is a linear or branched alkyl with 10 to 30 carbons, wherein the total number of carbons in the alkyl groups is in the range of 20 to 80 carbons; ii) a derivative of i) selected from the group consisting of an anhydride, an ester, an acetylate, an epoxy blocked ester and an amine salt thereof which is hydrolysable to the corresponding compound of formula I; and iii) a metal salt of i) wherein the metal ion is selected from the group consisting of copper, aluminum, tin and zinc; an article, for example, a coating, a wire or a cable, comprising the polymer composition, a process for producing an article and use of the polymer composition.
Abstract:
A process of making a cable having a conductor surrounded by at least one crosslinkable layer having a polymer composition. The polymer composition has (a) a polyolefin bearing hydrolysable silane groups and a silanol condensation catalyst compound.
Abstract:
A process of making a cable having a conductor surrounded by at least one crosslinkable layer having a polymer composition. The polymer composition has (a) a polyolefin bearing hydrolysable silane groups and a silanol condensation catalyst compound.
Abstract:
The present invention relates to a cable construction comprising one or more layer elements, which layer elements comprise a first composition, wherein the first composition comprises: 20 to 80 weight percent of a vinyl chloride resin and 1 to 40 weight percent of an epoxidized ester of fatty acids and a monomeric polyol, which epoxidized ester is a compound of formula (I) wherein the compound of formula (I) has an amount of double bonds corresponding to an Iodine value of 2 or less, a power cable, process for producing a cable construction, and a crosslinked cable construction obtainable by the process.
Abstract:
The present invention relates to a catalyst masterbatch for cross-linking a polyolefin comprising cross-linkable silicon-containing groups comprising a Brønsted acid and/or Brønsted acid anhydride (A); and a polyolefin (B) containing Brønsted acid and/or Brønsted acid anhydride groups. The present invention further relates to a polyolefin composition comprising a polyolefin (C) comprising cross-linkable silicon-containing groups; a Brønsted acid and/or Brønsted acid anhydride; and a polyolefin (B) containing Brønsted acid and/or Brønsted acid anhydride groups. The present invention further relates to the use of the catalyst masterbatch according to the invention for cross-linking a polyolefin composition comprising a polyolefin with cross-linkable silicon-containing groups (C). The present invention further relates to the use of polyolefin (B) containing Brønsted acid and/or Brønsted acid anhydride groups together with a sulphonic acid silanol condensation catalyst in a polyolefin composition comprising: a polyolefin with cross-linkable silicon-containing groups (C). The present invention further relates to the use of the catalyst masterbatch according to any one of the preceding claims 1 to 11 in a cable layer.