Abstract:
A copolymer of ethylene with silane groups containing comonomer that is produced in a high pressure radical polymerisation process comprising the steps of: (a) compressing ethylene together with the silane groups containing comonomer under pressure in a compressor, wherein a compressor lubricant is used for lubrication, (b) polymerising ethylene together with the silane groups containing comonomer in a polymerisation zone, (c) separating the obtained ethylene from the unreacted products and recovering the separated ethylene copolymer in a recovery zone, wherein in step a) the compressor lubricant comprises a mineral oil and ethylene copolymer has a silane groups containing comonomer content of 0.5 to 3 wt % and an MFR2 of 0.3 to 10 g/10 min. The copolymer of ethylene with silane groups containing comonomer can be used.
Abstract:
The invention relates to a foamable ethylene polymer composition comprising at least one antioxidant, at least one process aid and at least 80 wt % of a peroxide-treated ethylene polymer composition. The foamable ethylene polymer composition has melt strength of at least 2 cN, a density of 940 to 970 kg/m3, and dissipation factor measured at 1.9 GHz of 50-80−10−6. The invention further relates to a process for making such a foamable ethylene polymer composition, and use of the foamable ethylene polymer composition in a foamed cable insulation.
Abstract:
The present invention relates to an ethylene homo- or copolymerization process, characterized in that an inhibitor is added to the reaction mixture or any of its components before the reaction mixture is fed to the reaction zone. The present invention further relates to the use of an inhibitor to reduce fouling in an ethylene homo- or copolymerization process.
Abstract:
The present invention relates to a low density polyethylene having a molecular weight distribution Mw/Mn which is greater than 15, a storage modulus G′ (5 kPa) which is above 3000 and a vinylidene content which is at least 15/100 k C, compositions, a process for production of the low density polyethylene, a continuous ethylene polymerization method for introducing vinylidene in a low density polyethylene, a method for an extrusion coating process, an article, e.g. an extrusion article, and use in extrusion coating.
Abstract:
The present invention relates to low density polyethylene having a melt flow rate (MFR) according to ISO 1133 (190° C., 2.16 kg) which is higher than 4.0 g/10 min, a storage modulus G′, measured at a loss modulus G″ of 5 kPa, which is above 3000 Pa and a vinylidene content which is at least 24/100 k C, compositions, a process for production of the low density polyethylene, a low density polyethylene which is obtainable by the process, a continuous ethylene polymerization method for introducing vinylidene in a low density polyethylene, a method for an extrusion coating process or an extrusion lamination process, an article, e.g. an extrusion article, an extrusion lamination article, film blowing article, film casting article, wire and cable extrusion article, injection moulding article, blow moulding article or pipe extrusion article, and uses of the low density polyethylene.
Abstract:
The invention relates to a polyethylene having a melt flow rate at (2.16) kg loading (MFR2), determined according to method ISO1133-1:2011, which MFR2 is A g/10 min and A1≤A≤A2; wherein A1 is (0.5) and A2 is (1.70), and containing a total amount of vinyl groups which is B vinyl groups per (1000) carbon atoms, and B1≤B, wherein B1 is (0.45), determined according to method ASTM D6248-98, a polymer composition, an article being e.g. a cable, e.g. a power cable, and processes for producing a polyethylene, a polymer composition and an article, and an article; useful in different end applications, such as wire and cable (W&C) applications.
Abstract:
The present invention relates to a polyethylene composition comprising a base resin having a density of from 950.0 kg/m3 to 962.0 kg/m3, determined according to ISO 1183, wherein the polyethylene composition has a melt flow rate MFR21 (190° C., 21.16 kg), of from 1.0 to 9.0 g/10 min, determined according to ISO 1133 and a viscosity at a constant shear stress of 747 Pa eta747 of from 3500 kPa #s to 20000 kPa #s, a polyethylene composition obtainable by a multi-stage process, a process for producing said polyethylene composition, an article, such as a pipe or pipe fitting, comprising said polyethylene composition and the use of said polyethylene composition for the production of an article, such as a pipe or pipe fitting.
Abstract:
A polymer composition comprising a base resin is disclosed herein. The base resin includes a first high molecular weight component, a low molecular weight component and a second high molecular weight component. The weight average molecular weight of the second high molecular weight component differs from the first high molecular weight component. The ratio of the weight and number average molecular weight of the first high molecular weight component is greater than 5. The first high molecular weight component has a density of equal or less than 930 kg/m3, and an intrinsic viscosity of equal or less than 15 dl/g, The base resin has a melt flow rate MFR5 of equal or less than 0.40 g/10 min and the composition has a viscosity at a shear stress of 747 Pa (eta747) of more than 700 kPas. Also a process for the production of a polymer composition is disclosed herein.
Abstract:
A copolymer of ethylene with silane groups containing comonomer that is produced in a high pressure radical polymerisation process comprising the steps of: (a) compressing ethylene together with the silane groups containing comonomer under pressure in a compressor, wherein a compressor lubricant is used for lubrication, (b) polymerising ethylene together with the silane groups containing comonomer in a polymerisation zone, (c) separating the obtained ethylene from the unreacted products and recovering the separated ethylene copolymer in a recovery zone, wherein in step a) the compressor lubricant comprises a mineral oil and ethylene copolymer has a silane groups containing comonomer content of 0.5 to 3 wt % and an MFR2 of 0.3 to 10 g/10 min. The copolymer of ethylene with silane groups containing comonomer can be used.
Abstract:
Disentangled high or ultrahigh molecular weight polyethylene ((U)HMWPE) being produced with a Ziegler-Natta catalyst, characterized by (i) a factor for the normalized elastic modulus G′0/G′P of less than 0.95 determined in a dynamic time sweep measurement at 180° C. with constant strain of 0.5% at fixed frequency of 10 rad/s for at least 3600 s, whereby G′0 is the elastic shear modulus measured at t0 directly after melting the sample and G′p is the maximum plateau modulus.