摘要:
A liquid crystal display (LCD) device is provided which includes an LCD panel having first and second substrates facing each other, a plurality of gate and data lines crossing each other to define a plurality of pixel regions; a common electrode; a coupling line perpendicular to the data lines, to generate a signal by a coupling phenomenon with the data lines; and a common voltage generation circuit and a common voltage compensation circuit receiving the signal from the coupling line for compensating the common voltage. The compensated common voltage is applied to the common electrode.
摘要:
Provided is a guard trace pattern reducing far-end crosstalk and a printed circuit board having the guard trace pattern. The guard trace pattern includes a first guard trace pattern parallel with two signal lines and a plurality of second guard trace patterns perpendicular to the first guard trace pattern to increase mutual capacitance between the two signal lines and the guard trace pattern and increase mutual capacitance between the two signal lines. The printed circuit board includes the aforementioned guard trace pattern disposed between micro strip transmission lines. A characteristic impedance of the guard trace pattern is different from a characteristic impedance of the micro strip transmission lines, and resistances having the same value as a resistance component value of the characteristic impedance of the guard trace pattern are provided to both ends of the guard trace pattern.
摘要:
An internal clock doubler comprises a clock delay unit, an edge detecting unit and an output driver. The clock delay unit delays a clock signal for a predetermined delay time and outputs a delay clock signal. The edge detecting unit detects rising and falling edges of the clock signal in response to the delay clock signal and outputs a rising pulse signal and a falling pulse signal. The output driver outputs a double clock signal toggled at every rising edge and every falling edge of the clock signal in response to the rising pulse signal and the falling pulse signal. As a result, since a double clock signal having double frequency of an internal clock signal is generated without external input of an additional clock signal through an additional pad, a stable high-speed test can be performed on a semiconductor memory device.
摘要:
A thin film transistor array substrate includes a gate line formed on a substrate, a data line formed on the substrate intersecting with the gate line to define a pixel region, a thin film transistor formed at the intersection of the gate line and the data line, the thin film transistor including gate electrode formed on the substrate, a gate insulating layer formed on the gate electrode and the substrate, a semiconductor layer formed on the gate insulating layer,an ohmic contact layer on the semiconductor layer, and a source electrode and a drain electrode on the ohmic contact layer, and a transparent electrode material within the pixel region and connected to the drain electrode of the thin film transistor, wherein the gate insulating layer includes a gate insulating pattern underlying the data line and the transparent electrode material, and covering the gate line.
摘要:
A light emitting display includes a substrate, a pixel area, a first power source line to supply a first power signal to each pixel on a first side of the pixel area, a second power source line to supply the first power signal to each pixel on a second side of the pixel area, and an impedance compensator for compensating a difference in a voltage drop between the first power source line and the second power source line. A voltage drop caused by line resistance that depends on the length of the first and second power source line that supply the first power signal to a lower and upper side of a pixel area, respectively, is equalized, thereby minimizing the voltage drop of the first power signal supplied to all pixels, and minimizing non-uniformity of brightness due to the voltage drop differences at each pixel.
摘要:
Methods of forming metal interconnect layers include forming an electrically insulating layer having a contact hole therein, on a semiconductor substrate and then forming a recess in the electrically insulating layer, at a location adjacent the contact hole. The contact hole and the recess are then filled with a first electrically conductive material (e.g., tungsten (W)). At least a portion of the first electrically conductive material within the contact hole is then exposed. This exposure occurs by etching back a portion of the electrically insulating layer using the first electrically conductive material within the contact hole and within the recess as an etching mask. The first electrically conductive material within the recess is then removed to expose another portion of the electrically insulating layer. Following this, the exposed portion of the first electrically conductive material is covered with a second electrically conductive material (e.g., copper (Cu)), which directly contacts the exposed portion of the first electrically conductive material. This covering step results in the definition of a wiring pattern including the first and second electrically conductive materials.
摘要:
A liquid crystal display device and its fabrication method may prevent occurrence of light leakage generated from the sides of a data line. A dummy pattern at sides of the data line with glass powder as an insulation film may simplify the repairing process. A method for fabricating a liquid crystal display device includes a gate electrode, a gate line, a dummy pattern and a first insulation film that are formed on a substrate. A switching element is formed on a portion of the gate electrode and includes a source electrode, a drain electrode and an active layer. A data line formed at a portion of the dummy pattern. A second insulation film is formed on the substrate and has a first contact hole that exposes a portion of the drain electrode. A pixel electrode is formed on the substrate and is electrically connected with the drain electrode through the first contact hole.
摘要:
A liquid crystal display panel includes: a thin film transistor array substrate having a gate line and a data line provided on the substrate; a gate insulating film between the gate line and the data line; a thin film transistor having a source electrode, a drain electrode and a gate electrode; a pixel electrode; a protective film for protecting the thin film transistor; a plurality of pads; a transparent electrode pattern formed on the data line, source electrode and drain electrode; and a color filter array substrate joined to the thin film transistor array substrate so that the color filter substrate does not overlap the pad area of the thin film transistor array substrate, wherein at least one of the gate insulating film and protective film in the pad area is etched using the color filter array substrate as a mask to expose at least one of the plurality of pads.
摘要:
The present invention relates to a high energy density beam welding system using molten metal droplet jetting. The present invention includes a beam emitting unit for emitting a high energy density beam onto a welded portion on a target object; and a molten metal droplet jetting unit for generating molten metal droplets to transfer or spray the molten metal droplets onto the welded portion on the target object, which follows a path of the beam emitting unit. Thus, it has advantages of widening a range of applications and enhancing the productivity and the quality in that a welding can be performed at a high junction efficiency even where a gap is wide, a loss in the high density energy beam is small, and heat distortions of the welded portion can be minimized.
摘要:
Methods of forming metal interconnect structures include forming a first electrically insulating layer on a semiconductor substrate and forming a second electrically insulating layer on the first electrically insulating layer. The second and first electrically insulating layers are selectively etched in sequence to define a contact hole therein. A first metal layer (e.g., tungsten) is deposited. This first metal layer extends on the second electrically insulating layer and into the contact hole. The first metal layer is then patterned to expose the second electrically insulating layer. The second electrically insulating layer is selectively etched for a sufficient duration to expose the first electrically insulating layer and expose a metal plug within the contact hole. This selective etching step is performed using the patterned first metal layer as an etching mask. A seam within the exposed metal plug is then filled with an electrically conductive filler material (e.g., CoWP). A second metal layer is then formed on the exposed metal plug containing the electrically conductive filler material.