Abstract:
The present disclosure provides an electrophotographic member having an elastic layer containing graphite particles dispersed in a silicone rubber and having a high thermal conductivity in the thickness direction. The electrophotographic member includes a substrate and an elastic layer on the substrate, the elastic layer containing a cured product of an addition-curable liquid silicone rubber mixture including an addition-curable liquid silicone rubber and graphite particles, and the graphite particles having a DBP oil absorption number of 40 cm3/100 g or more and lower than 80 cm3/100 g.
Abstract:
The present disclosure provides an electrophotographic member having an elastic layer containing graphite particles dispersed in a silicone rubber and having a high thermal conductivity in the thickness direction. The electrophotographic member includes a substrate and an elastic layer on the substrate, the elastic layer containing a cured product of an addition-curable liquid silicone rubber mixture including an addition-curable liquid silicone rubber and graphite particles, and the graphite particles having a DBP oil absorption number of 40 cm3/100 g or more and lower than 80 cm3/100 g.
Abstract:
Provided is a member for electrophotography. The member for electrophotography includes: a substrate; an elastic layer containing a cured silicone rubber having a methyl group bonded to a silicon atom; and a fluorine resin release layer bonded to a surface of the elastic layer by an addition-curing-type silicone rubber adhesive. The elastic layer contains a titanium oxide particle having an anatase-type crystal structure.
Abstract:
Provided is a fixing member having a silicone rubber elastic layer blended with a carbon nanotube, the fixing member suppressing peeling at an interface in association with insufficient adhesion between a base member and the silicone rubber elastic layer at the time of the use of the fixing member, and hence securing adhesion durability. The fixing member includes a base member, an elastic layer, and a surface layer, in which: the elastic layer contains a silicone rubber and a carbon nanotube; a ratio E200/E50 of an elastic modulus E200 of the elastic layer at 200° C. to an elastic modulus E50 of the elastic layer at 50° C. is 0.5 or more and less than 1.0; an adhesive strength between the elastic layer and the base member is 3.0 N/cm or more and 20.0 N/cm or less; and the elastic layer undergoes a cohesive failure at the time of a peel test.
Abstract:
The method for forming a coating film includes: supplying a first liquid from a nozzle to a cylindrical substrate to thereby form the coating film of the first liquid, wherein the method includes, pressing a member including a second liquid, to form a liquid film of the second liquid on the peripheral surface, and forming the coating film of the first liquid includes: supplying the first liquid onto the liquid film of the second liquid formed on the peripheral surface of the substrate to form a bead of the first liquid between the liquid-supplying unit and the liquid film of the second liquid, and extending the bead in a circumferential direction of the substrate.
Abstract:
The present invention is directed to providing a fixing member that has a flexible surface and that can supply a larger amount of heat to a material to be recorded and a toner in a shorter period of time. The fixing member comprises a substrate, an elastic layer and a releasing layer, wherein thermal effusivity in a depth region from a surface of the releasing layer is 1.5 [kJ/(m2·K·sec0.5)] or more, the depth region corresponding to a thermal diffusion length when an alternating-current temperature wave having a frequency of 10 Hz is applied to the surface of the releasing layer, and a surface micro rubber hardness is 85 degrees or less.
Abstract:
Provided is an electrophotographic member, the member including an elastic layer that is formed by graphite particles dispersed in a silicone rubber and has high thermal conductivity in the thickness direction. The electrophotographic member has a substrate and an elastic layer on the substrate, in which the elastic layer contains a cured product of an addition-curable liquid silicone rubber mixture including graphite particles, the dibutyl phthalate (DBP) oil absorption number of the graphite particles is from 80 cm3/100 g to 150 cm3/100 g, the thermal conductivity in the thickness direction of the elastic layer is from 1.1 W/(m·K) to 5.0 W/(m·K), and the modulus in tension of the elastic layer is from 0.1 MPa to 4.0 MPa.
Abstract:
A fixing member includes a substrate and an elastic layer on the substrate. The elastic layer comprises a cured product of a silicone rubber composition containing an anatase titanium oxide particle and an addition-curable silicone rubber, and undergoes cohesive failure in 90° peel test specified in JIS K6854-1: 1999. In the fixing member, an allyl group bound to a silicon atom is present at the interface between the substrate and the elastic layer.
Abstract:
An electrophotographic fixing member includes a substrate, a cured silicone rubber layer and a fluorine resin layer bonded onto the cured silicone rubber layer, wherein a micro hardness of a cured silicone rubber constituting the cured silicone rubber layer is designated as Hμ0, and a micro hardness of a rubber obtained by soaking the cured silicone rubber in a methyl hydrogen silicone oil for 24 hours and then further curing the cured silicone rubber, is designated as Hμ1, Hμ1/Hμ0 is 1.5 or more and 5.0 or less, and the cured silicone rubber layer comprises a titanium oxide crystal having an anatase type structure.
Abstract:
The method for forming a coating film includes: supplying a first liquid from a nozzle to a cylindrical substrate to thereby form the coating film of the first liquid, wherein the method includes, pressing a member including a second liquid, to form a liquid film of the second liquid on the peripheral surface, and forming the coating film of the first liquid includes: supplying the first liquid onto the liquid film of the second liquid formed on the peripheral surface of the substrate to form a bead of the first liquid between the liquid-supplying unit and the liquid film of the second liquid, and extending the bead in a circumferential direction of the substrate.