Abstract:
A device has magnetic sensors and magnets in an array on a flexible substrate. Each magnetic sensor is sensitive to immediately proximate magnets. At least one controller evaluates magnetic sensor signals from the magnetic sensors produced in response to deformation of the flexible substrate.
Abstract:
A device has a flexible substrate supporting an array of magnetic sensors exposed to a uniform external magnetic field. One or more controllers receive magnetic sensor signals from the magnetic sensors. The one or more controllers collect reference magnetic sensor signals when the flexible substrate is aligned with the uniform external magnetic field. The one or more controllers collect first polarity magnetic sensor signals in response to deformation of the flexible substrate in a first direction. The one or more controllers collect second polarity magnetic sensor signals in response to deformation of the flexible substrate in a second direction. The magnetic sensor signals establish a profile of the orientation of the flexible substrate with respect to the uniform external magnetic field.
Abstract:
An apparatus includes circuits including a first circuit and a second circuit, each circuit including subarrays of magnetic tunnel junctions, where: (1) the magnetic tunnel junctions in each subarray are arranged in rows, the magnetic tunnel junctions in each row are connected in series, and the rows are connected in parallel; and the subarrays are connected in series. The apparatus further comprises a field line configured to generate a first magnetic field for configuring an operating point of the first circuit based on a current flow through the field line, wherein impedance of one or more of the magnetic tunnel junctions in each of the plurality of rows of each subarray of magnetic tunnel junctions included in the first circuit is configured based on the first magnetic field.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
A circuit includes a magnetic logic unit including input terminals, output terminals, a field line, and magnetic tunnel junctions (MTJs). The field line electrically connects a first and a second input terminal, and is configured to generate a magnetic field based on an input to at least one of the first and the second input terminal. The input is based on an analog input to the circuit. Each MTJ is electrically connected to a first output terminal and a second output terminal, and is configured such that an output of at least one of the first and the second output terminal varies in response to a combined resistance of the MTJs. The resistance of each of the MTJs varies based on the magnetic field. The circuit is configured to generate an analog output based on the output of at least one of the first and the second output terminal.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
A check engine includes a plurality of comparators each including a first directional characteristic aligned to store at least one reference bit included in a set of reference bits, and a second directional characteristic aligned to present at least one target bit included in a set of target bits. Each of the plurality of comparators is configured to produce an output representing a level of matching between the at least one target bit and the at least one reference bit, based on a relative alignment between the first directional characteristic and the second directional characteristic. The check engine is configured such that the outputs of the plurality of comparators are combined to produce a combined output. The check engine is configured to determine that the set of target bits matches the set of reference bits based on the combined output of the plurality of comparators.
Abstract:
An apparatus includes a circuit and a field line. The circuit includes a magnetic tunnel junction including a storage layer and a sense layer. The field line is configured to generate a magnetic field based on an input signal, where the magnetic tunnel junction is configured such that a magnetization direction of the sense layer and a resistance of the magnetic tunnel junction vary based on the magnetic field. The circuit is configured to amplify the input signal to generate an output signal that varies in response to the resistance of the magnetic tunnel junction.