Abstract:
An electronic device according to various embodiments of the present disclosure may comprise: a housing comprising a front plate facing in a first direction, a rear plate facing in a second direction opposite to the first direction, and a side member disposed to surround a space between the front plate and the rear plate; a rigid display disposed between the front plate and the rear plate of the housing, for externally displaying information in the first direction; a flexible display extending from one side of the rigid display and bending relative to the rigid display, thereby forming a curved surface, or disposed in parallel to the rigid display, thereby forming a flat surface; a plurality of magnets arranged at a specified interval in the flexible display; and a first sensor disposed in the rigid display and configured to sense the degree of bending of the flexible display by sensing magnetic forces provided by the plurality of magnets.
Abstract:
A shape measurement device and a shape measurement method according to the present invention measure, for first and second distance measurement units which are disposed so as to be opposed to each other with a measurement object to be measured interposed therebetween and each measure a distance to the measurement object, first and second displacements of the first and second distance measurement units in an opposition direction, and obtain, as a shape of the measurement object, a thickness of the measurement object in the opposition direction, the thickness being corrected with the measured first and second displacements, based on first and second distance measurement results measured by the first and second distance measurement units, respectively.
Abstract:
A device for measuring a tire ground state includes a traveling surface, a tire drive unit, a measuring sheet, a protection sheet which covers the measuring sheet, and a backward and forward tensile force application mechanism. A space conducting the protection sheet to a portion below the traveling surface is formed in at least one of a delay side and an advance side of the measuring sheet in the tire forward traveling direction on the traveling surface. The backward and forward tensile force application mechanism has a roller which is arranged within the space, and is structured such as to pull at least one end of the protection sheet fixed to the roller in the tire forward traveling direction from the below of the traveling surface by rotating the roller.
Abstract:
A cushion module is provided herein and includes a mounting manifold and a retaining plate. An array of pneumatic assemblies is coupled to and disposed between the mounting manifold and the retaining plate. Each pneumatic assembly includes a pneumatic cylinder having a piston rod and configured to receive pressurized air for moving the piston rod to a selected position. The pressurized air supplied to each pneumatic cylinder is variable and the piston rods collectively define a support surface having variable contour and firmness, and on which an object is rested to assess the comfortability of the support surface.
Abstract:
A sensor arrangement for determining at least one physical parameter of a sensor unit which is activated by at least one periodic excitation, comprising a detection region in which changes of the parameter in the surroundings of the sensor unit lead to an output signal from the sensor unit. The sensor unit is wired such that if there is no change of the parameter in the detection region the output signal is a zero signal at the output of the sensor unit, whereas if there are changes of the parameter in the detection region the output signal is a signal that is not zero and which has a specific amplitude and phase. By means of a closed-loop control, the non-zero signal in the receive path is adjusted to achieve an adjusted state at zero even in the presence of changes of the parameter in the detection region. Inherent in the control signal used for this adjustment is a deviation (Δx, Δy) of the control signal from the adjusted state, which deviation represents information about the parameter. To create a sensor arrangement and a method in which values of a physical parameter in a detection region can be clearly determined, in a four-quadrant representation of the deviation (Δx, Δy) in the form of a vector analysis in a phase space of the control signal, the angle of an imaginary vector (2.6) relative to the x axis of an x, y coordinate system, said vector leading from the origin (2.7) of the x, y coordinate system to a measuring point (2.5) and said origin corresponding to the adjusted state, represents a measurement for the change of the parameter along a direction, and/or the magnitude of the imaginary vector (2.6) represents a measurement for the change of the parameter along a further direction.
Abstract:
A method and device for providing a multi-modal capacitive sensor, including a plurality of sensor electrodes, in an electronic device is provided. In a first mode, the capacitive sensor is configured to capture an image of a biometric object. In a second mode, the capacitive sensor is configured to provide presence detection functionality. In the second mode, the capacitive sensor includes at least one first electrode and at least one second electrode selected from a plurality of sensor electrodes. When operating in the second mode, the at least one first electrode is configured to receive a transmit signal, and the at least one second electrode is configured to receive a resulting signal capacitively coupled from the at least one first electrode. Based on the resulting signal, a processing system of the electronic device determines whether a biometric object to be imaged is present in the sensing area.
Abstract:
Systems and methods for determining a three-dimensional profile of an edge of an object are presented. The edge is defined by adjoining first and second surfaces. A first set of surface points can be detected on the first surface, and a second set of surface points can be detected on the second surface. The second set of surface points can correspond to the first set of surface points. A sensor, such as a contact sensor, can be used to detect the first and second set of surface points. Based on the detected first and second set of surface points, a profile of the edge can be determined automatically, such as by a processor operatively connected to the sensor. In this way, the profile of the edge can be determined without direct detection of the edge.
Abstract:
The present invention provides a sensor including a tactile sensor and bending sensor and a method of making the same, of which the manufacturing cost is low, the production efficiency is high and the sensor sensitivity is improved. The present invention relates to a sensor including a tactile sensor and bending sensor composed of an elastomer containing a magnetic filler and a magnetic sensor that detects a magnetic change caused by deformation of the elastomer; and a method of making the same, of which the viscosity of the mixed solution of the thermosetting elastomer precursor solution with the magnetic filler is adjusted to a specified range.
Abstract:
A form measuring instrument includes: a body; a movable member including: a stylus holder being rotatably supported by the body; a stylus being held by the stylus holder; and a tip being provided at an end of the stylus and being contactable with a workpiece surface; a measurement-force-applying unit being adapted to generate a rotation force acting on the stylus holder to bring the tip of the stylus into contact with the workpiece surface; a displacement detector being provided to a portion of the stylus holder to detect a displacement of the stylus holder resulting from a rotation thereof; and a vibration generator being adapted to apply vibration to the stylus holder.
Abstract:
A surface texture measuring instrument includes a force sensor (1), an actuator (11) and a detector (12). The surface texture measuring instrument further includes: a scanning controller (54) that collects a detection signal from the force sensor (1) and drives the actuator such that the detecting signal coincides with a target measurement value; a touch signal generator (51) that generates a touch signal when the detection signal from the force sensor (1) coincides with the target measurement value; and a measurement value collecting unit (55) that collects a measurement value from a counter (26) at a predetermined time interval in a state where a fluctuation range of the detection signal from the force sensor (1) is within a preset range when a scanning controller is in operation, the latch counter (52) collecting a measurement value from a latch counter (52) each time the touch signal is generated in a state where the detection signal from the force sensor (1) oscillates and an amplitude exceeds the preset range.