Abstract:
The present disclosure provides an engine stop/start control system for a vehicle comprising a first engine restart module configured to set a restart frequency and duration of an engine in response to a sensed ambient temperature, a second engine restart module configured to control the engine in response to a sensed characteristic temperature associated with the engine, a third engine restart module configured to control the engine in response to occurrence or non-occurrence of at least one expected charging event along a predefined route, a fourth engine restart module configured to control the engine in response to a state-of-charge of an energy storage device, and a route optimization module configured to set and adjust a proposed route to a destination that results in reduced engine usage.
Abstract:
The present disclosure provides an engine stop/start control system for a vehicle comprising a first engine restart module configured to set a restart frequency and duration of an engine in response to a sensed ambient temperature, a second engine restart module configured to control the engine in response to a sensed characteristic temperature associated with the engine, a third engine restart module configured to control the engine in response to occurrence or non-occurrence of at least one expected charging event along a predefined route, a fourth engine restart module configured to control the engine in response to a state-of-charge of an energy storage device, and a route optimization module configured to set and adjust a proposed route to a destination that results in reduced engine usage.
Abstract:
An alternator voltage may be controlled based on a proportional gain scheduling in response to an engine load of an internal combustion engine and/or a state of charge (SOC) deviation for a battery based on a target SOC of the battery and an actual SOC of the battery. The alternator voltage may be a voltage less than a current battery voltage under high engine loads to enable the battery to power an accessory system and the alternator voltage may be a voltage greater than a voltage of the battery under low engine loads or engine loads less than high engine loads to enable the alternator to charge the battery.
Abstract:
Systems and methods for implementing a start-stop feature on a vehicle powered at least in party by an internal combustion engine are described. The method includes receiving, at an electronic control unit (“ECU”) of the vehicle, an indication that the vehicle is in line at a drive-thru. The method further includes determining, by the ECU, a number of start-stop events anticipated during the drive-thru. The method includes determining, by the ECU, an approximate stop time for each of the number of start-stop events. The method further includes determining, by the ECU, that a battery of the vehicle has enough remaining charge to power a plurality of vehicle components during implementation of the start-stop feature. The method includes implementing, by the ECU, the start-stop feature in which the internal combustion engine is turned off for at least a portion of the time when the vehicle is stopped.
Abstract:
The present disclosure provides an engine stop/start control system for a vehicle comprising a first engine restart module configured to set a restart frequency and duration of an engine in response to a sensed ambient temperature, a second engine restart module configured to control the engine in response to a sensed characteristic temperature associated with the engine, a third engine restart module configured to control the engine in response to occurrence or non-occurrence of at least one expected charging event along a predefined route, a fourth engine restart module configured to control the engine in response to a state-of-charge of an energy storage device, and a route optimization module configured to set and adjust a proposed route to a destination that results in reduced engine usage.
Abstract:
you and a Systems and methods for implementing a start-stop feature on a vehicle powered at least in party by an internal combustion engine are described. The method includes receiving, at an electronic control unit (“ECU”) of the vehicle, an indication that the vehicle is in line at a drive-thru. The method further includes determining, by the ECU, a number of start-stop events anticipated during the drive-thru. The method includes determining, by the ECU, an approximate stop time for each of the number of start-stop events. The method further includes determining, by the ECU, that a battery of the vehicle has enough remaining charge to power a plurality of vehicle components during implementation of the start-stop feature. The method includes implementing, by the ECU, the start-stop feature in which the internal combustion engine is turned off for at least a portion of the time when the vehicle is stopped.
Abstract:
An alternator voltage may be controlled based on a proportional gain scheduling in response to an engine load of an internal combustion engine and/or a state of charge (SOC) deviation for a battery based on a target SOC of the battery and an actual SOC of the battery. The alternator voltage may be a voltage less than a current battery voltage under high engine loads to enable the battery to power an accessory system and the alternator voltage may be a voltage greater than a voltage of the battery under low engine loads or engine loads less than high engine loads to enable the alternator to charge the battery.
Abstract:
Controls for improved drivability of a vehicle equipped with start/stop logic are disclosed. A nominal control stop for the internal combustion engine of the vehicle is disabled or prevented from occurring in response to a vehicle mass and route grade indicating a roll back condition for the vehicle exists if the nominal control stop for the engine were to take place.
Abstract:
Systems and methods for implementing a start-stop feature on a vehicle powered at least in party by an internal combustion engine are described. The method includes receiving, at an electronic control unit (“ECU”) of the vehicle, an indication that the vehicle is in line at a drive-thru. The method further includes determining, by the ECU, a number of start-stop events anticipated during the drive-thru. The method includes determining, by the ECU, an approximate stop time for each of the number of start-stop events. The method further includes determining, by the ECU, that a battery of the vehicle has enough remaining charge to power a plurality of vehicle components during implementation of the start-stop feature. The method includes implementing, by the ECU, the start-stop feature in which the internal combustion engine is turned off for at least a portion of the time when the vehicle is stopped.
Abstract:
Systems and methods for implementing a start-stop feature on a vehicle powered at least in part by an internal combustion engine include receiving, at an electronic control unit (“ECU”) of the vehicle, an indication that the vehicle is in line at a drive-thru; determining, by the ECU, a number of startstop events anticipated during the drive-thru; determining, by the ECU, an approximate stop time for each of the number of start-stop events; determining, by the ECU, that a battery of the vehicle has enough remaining charge to power a plurality of vehicle components during implementation of the start-stop feature; implementing, by the ECU, the start-stop feature in which the internal combustion engine is turned off for at least a portion of the time when the vehicle is stopped