Abstract:
A control system and method to control cold transient response of an engine. The control system can provide compressed air from a compressed air source to a turbocharger to boost speed of a turbine of the turbocharger, based on determined desired operating characteristics associated with upstream or downstream operation of the engine relative to the turbocharger. The control system can receive data corresponding to actual operating characteristics associated with the upstream or downstream operation of the engine relative to the turbocharger, compare the desired operating characteristics with the data corresponding to actual operating characteristics, and control the air assist from the compressed air source based on the comparison.
Abstract:
The disclosure relates to a system and method for determining the specific gravity of a fuel used in a dual fuel engine. The system includes a fuel rail, at least one sensor, and a processor. The method includes sensing and recording, with the at least one sensor and the at least one memory, a first pressure profile of a first fuel in the fuel rail and a second pressure profile of a second fuel in the fuel rail. The first fuel has a known specific gravity and the second fuel has an unknown specific gravity. The method further includes calculating the second specific gravity of the second fuel, with a processor, based on the first pressure profile, the second pressure profile, and the first specific gravity.
Abstract:
A control system for controlling pilot fuel injection in a dual fuel engine is disclosed. The control system may determine, using measurements from one or more sensors, one or more combustion parameters associated with the dual fuel engine during operation of the dual fuel engine. The control system may determine an estimated nitrogen oxides (NOx) emissions level based on the one or more combustion parameters, and may determine a NOx error based on a comparison between the estimated NOx emissions level and a desired NOx emissions level. The control system may control a quantity of pilot fuel injected into the dual fuel engine based on the NOx error.
Abstract:
A controller for an internal combustion engine is configured to operate the engine at a desired output power and at a desired air/fuel ratio provided in the cylinder, the desired air/fuel ratio depending on an amount of air, the primary fuel, and the secondary fuel provided to the cylinder selectively; gradually increase a power output of the engine during a transient event from an initial power output, to an intermediate power output, and then to a final power output; during the transient event, simultaneously with the power output increase, increase the amount of the primary fuel and the secondary fuel to produce a rich air/fuel ratio in the cylinder.
Abstract:
A control system for a dual gaseous and liquid fuel engine includes an electronic controller configured to receive data from a plurality of sensing mechanisms indicative of an error in a plurality of different engine operating parameters. The electronic controller is further configured to determine a highest priority one of the errors, and limit substitution of the gaseous fuel responsive to a normalized value thereof.
Abstract:
A method for controlling fuel flow in a multi-fuel engine is disclosed. The method includes determining an estimated lower heating value (LHV) of a gaseous fuel by, at least, comparing a mapped volume flow value with an input volume flow value, the input volume flow value based on the input power. The method further includes determining a gaseous fuel flow rate for the gaseous fuel, the gaseous fuel flow rate based on, at least, a specific fuel substitution ratio of the gaseous fuel and a secondary fuel and the estimate LHV of the gaseous fuel source.
Abstract:
Controlling intake pressure in a gaseous fuel internal combustion engine includes calculating a control term in an intake pressure control loop based on a pressure error, and adjusting a throttle valve and a second valve responsive to the control term in first and second control loop cycles. The second valve is within a return conduit returning compressed gases from a location downstream a compressor to a location upstream. A pressure of gaseous fuel and air within the intake conduit is changed via the adjustments so as to reduce the pressure error.
Abstract:
A method for controlling and engine system with a plurality of turbochargers. At least one of the plurality of turbochargers has a turbine valve, a compressor valve, and actuators operable to change the position of the turbine valve. The method comprises controlling the actuator based on the presence of a transient event or a steady state event. During a transient event an engine control module can control the actuators to change the turbine valve to opened and closed positions and the turbine valve to a closed position based on the comparison between a corrected mass flow per turbocharger to a mass flow threshold.
Abstract:
An engine speed control system for an internal combustion engine includes a throttle, and a sensor that monitors a parameter indicative of pressure or density of fuel and air in an inlet manifold of the engine. The electronic control unit is coupled with the throttle and the sensor and structured to calculate a target mass flow through the throttle, a feedforward control term based on the target mass flow, and a feedforward control term based on data produced by the sensor. The electronic control unit is further structured to vary a position of the throttle based on the feedforward and feedback control terms to adjust a mass flow through the throttle toward the target mass flow. The control system is applicable in throttle governed as well as fuel governed systems.
Abstract:
An engine speed control system for an internal combustion engine includes a throttle, and a sensor that monitors a parameter indicative of pressure or density of fuel and air in an inlet manifold of the engine. The electronic control unit is coupled with the throttle and the sensor and structured to calculate a target mass flow through the throttle, a feedforward control term based on the target mass flow, and a feedforward control term based on data produced by the sensor. The electronic control unit is further structured to vary a position of the throttle based on the feedforward and feedback control terms to adjust a mass flow through the throttle toward the target mass flow. The control system is applicable in throttle governed as well as fuel governed systems.