摘要:
A light emitting diode includes a substrate, a plurality of pillar structures, a filler structure, a transparent conductive layer, a first electrode, and a second electrode. These pillar structures are formed on the substrate. Each of the pillar structures includes a first type semiconductor layer, an active layer, and a second type semiconductor layer. The first type semiconductor layers are formed on the substrate. The pillar structures are electrically connected with each other through the first type semiconductor layers. The filler structure is formed between the pillar structures. The filler structure and the second type semiconductor layers of the pillar structures are covered with the transparent conductive layer. The first electrode is in contact with the transparent conductive layer. The second electrode is in contact with the first type semiconductor layer.
摘要:
A light emitting diode includes a substrate, a plurality of pillar structures, a filler structure, a transparent conductive layer, a first electrode, and a second electrode. These pillar structures are formed on the substrate. Each of the pillar structures includes a first type semiconductor layer, an active layer, and a second type semiconductor layer. The first type semiconductor layers are formed on the substrate. The pillar structures are electrically connected with each other through the first type semiconductor layers. The filler structure is formed between the pillar structures. The filler structure and the second type semiconductor layers of the pillar structures are covered with the transparent conductive layer. The first electrode is in contact with the transparent conductive layer. The second electrode is in contact with the first type semiconductor layer.
摘要:
A second-harmonic generation nonlinear frequency converter includes a nonlinear optical crystal. The nonlinear optical crystal includes a plurality of sections. The sections connect to each other in sequence, and each section has a phase different from others. Each of the phases includes a positive domain and a negative domain. Each of the sections includes a plurality of quasi-phase-matching structures. The quasi-phase-matching structures connect to each other in sequence and have the same phase in one section.
摘要:
Provided are an apparatus and a method for converting laser energy, characterized by employing an optical parametric oscillator for converting light of a green laser wavelength into light of a blue or red laser wavelength via a phase matching structure, by means of a non-linear optical crystal having a one-dimensional quasi-phase matching structure with a single grating period under appropriately-controlled temperature conditions. The non-linear optical crystal with the single grating period facilitates optical parametric oscillation and second harmonic generation to thereby enable green-to-blue wavelength conversion with a slope efficiency greater than 20%. Under 400 mW green light pump laser action, a periodically poled LiTaO3 crystal with a crystal length of 15 mm and without a resistant reflective plating film on its end face is capable of outputting a blue light laser beam of 56 mW.
摘要:
The present disclosure provides an interconnect structure for a semiconductor device. The interconnect structure includes a first metal layer that contains a first metal line. The interconnect structure includes a dielectric layer located over the first metal layer. The dielectric layer contains a first sub-via electrically coupled to the first metal line and a second sub-via electrically coupled to the first sub-via. The second sub-via is different from the first sub-via. The interconnect structure includes a second metal layer located over the dielectric layer. The second metal layer contains a second metal line electrically coupled to the second sub-via. No other metal layer is located between the first metal layer and the second metal layer.
摘要:
A method for manufacturing a semiconductor device includes forming a metal oxide semiconductor layer and a first insulating layer on a substrate. A gate is formed on the first insulating layer. The first insulating layer is patterned by using the gate as an etching mask so as to expose the metal oxide semiconductor layer to serve as a source region and a drain region. A dielectric layer is formed on the substrate to cover the gate and the oxide semiconductor layer, where the dielectric layer has at least one of hydrogen group and hydroxyl group. A heating treatment is performed so that the at least one of hydrogen group and hydroxyl group reacts with the source region and the drain region. A source electrode and a drain electrode electrically connected to the source region and the drain region respectively are formed on the dielectric layer.
摘要:
A method for manufacturing a semiconductor device includes forming a metal oxide semiconductor layer and a first insulating layer on a substrate. A gate is formed on the first insulating layer. The first insulating layer is patterned by using the gate as an etching mask so as to expose the metal oxide semiconductor layer to serve as a source region and a drain region. A dielectric layer is formed on the substrate to cover the gate and the oxide semiconductor layer, where the dielectric layer has at least one of hydrogen group and hydroxyl group. A heating treatment is performed so that the at least one of hydrogen group and hydroxyl group reacts with the source region and the drain region. A source electrode and a drain electrode electrically connected to the source region and the drain region respectively are formed on the dielectric layer.
摘要:
An LED lamp includes a heat sink including a base having a heat-dissipating face, an LED module including a printed circuit board mounted on the base and a plurality of LEDs disposed on the printed circuit board, and a connecter electrically connecting the LED module to a power supply. The heat sink further includes a plurality of spiral fins protruding outwardly from the heat-dissipating face of the base.
摘要:
A lens applied to a light emitting element includes a first surface profile and a second surface profile opposite to the first surface profile. The first surface profile defines a first trench facing the light emitting element, and the first trench includes a bottom curved surface serving as a light incident surface. The second surface profile includes a top curved surface, and serves as a light emitting surface. Both the bottom and the top curved surfaces are mirror symmetric to the first suppositional plane P1 (X=0), and mirror asymmetric to the second suppositional plane P2 (Y=0) to cooperatively adjust light from the light emitting element to obtain an asymmetric light field. An illumination device having the lens is further provided.
摘要:
An LED light emitting device includes an LED light emitting component comprising a visible LED die emitting visible light and an infrared LED die emitting infrared light, a power source driver for providing electric energy for the LED light emitting component, and a temperature sensor for sensing a surface temperature of an outer surface of the LED light emitting component. When a value of the surface temperature is smaller than zero degree Celsius, the temperature sensor outputs a control signal to the power source driver to control the power source driver to supply an electric current to the infrared LED die, whereby the infrared LED die radiates infrared light to melt ice on the outer surface of the LED light emitting component.