Abstract:
A method of manufacturing low-haze plastic window glazing is claimed where a portion of a panel mold interior is polished with an abrasive material no finer than 600 grit size. Plastic resin is then introduced into the mold under heat and pressure to form a panel. Weatherable coating is then applied to portions of the panel via a wet coating process. An abrasion resistant coating is then applied to portions of the panel via a plasma application technique. This method produces a window glazing with at least one portion having no more than 1% haze.
Abstract:
A plastic window including a transparent plastic substrate having first and second sides. Bonded to the first side of the substrate is a plastic film, the film being thinner than the substrate. An electrically conductive grid, including at least one conductive connector location, is encapsulated between the substrate and the film. Extending into the substrate, at least one electrical connector is positioned in electrical contact with the conductive mounting so that an electrical voltage supply can be connected to the conductive mounting and an electrical current can be caused to flow through the conductive grid.
Abstract:
A plastic window including a transparent plastic substrate having first and second sides. Bonded to the first side of the substrate is a plastic film, the film being thinner than the substrate. An electrically conductive grid, including at least one conductive connector location, is encapsulated between the substrate and the film. Extending into the substrate, at least one electrical connector is positioned in electrical contact with the conductive mounting so that an electrical voltage supply can be connected to the conductive mounting and an electrical current can be caused to flow through the conductive grid.
Abstract:
A window defrost assembly having a substrate, a polycarbonate film adjacent to the substrate, a heater grid located between the substrate and the polycarbonate film, and a light control layer located between the polycarbonate film and the heater grid. The heater grid includes first and second bus bars and a plurality of grid lines extending between and connecting to the first and second bus bars.
Abstract:
A multifunctional glazing panel for automotive window assembly. The glazing panel includes a plastic film having a functional layer, a base layer of a polymer material, a tie layer between the plastic film and the base layer. An abrasion resistant layer, for protecting the plastic film and base layer from damage caused by abrasion, is provided over the plastic film.
Abstract:
The present invention provides an automotive glazing assembly constructed by a process of film insert molding (FIM). The glazing assembly comprises a transparent plastic substrate having an ink composition that has a blend of polyester and polycarbonate resins such that the ink exhibits uniform opacity and stability during all thermoforming and injection molding operations, and is capable of forming complex 3-D geometries. The glazing assembly comprising the ink composition is further free from surface defects such as pinholes and micro-cracks.
Abstract:
This invention relates to plastic glazing assemblies for vehicle tops, windows, headlamps, and taillights, as well as residential and commercial glazing, aircraft glazing, and sunglasses. More specifically, a method of manufacturing a plastic glazing assembly exhibiting a high level of weatherability and abrasion resistance is disclosed which integrates the in-mold application of a coating and the subsequent deposition of an abrasion resistant layer to a molded plastic part.
Abstract:
A plastic panel and method of application for vehicle windows is disclosed. The plastic panel includes: a base layer; a weatherable film layer having a first and second surface, wherein the first surface of the film layer is adhered to the base layer; and an abrasion resistant layer adhered to the second surface of the weatherable film layer. The abrasion resistant layer is useful for protecting the weatherable film and base layers from damage caused by abrasion.
Abstract:
This invention relates to plastic glazing assemblies for vehicle tops, windows, headlamps, and taillights, as well as residential and commercial glazing, aircraft glazing, and sunglasses. More specifically, a method of manufacturing a plastic glazing assembly exhibiting a high level of weatherability and abrasion resistance is disclosed which integrates the in-mold application of a coating and the subsequent deposition of an abrasion resistant layer to a molded plastic part.
Abstract:
A method for applying an abrasion resistant layer via a vacuum deposition technique to a plastic automotive window is provided. The plastic automotive window includes a plastic panel, an electroluminescent layer, and a weatherable layer. A first abrasion resistant sub-layer is then deposed on top of the weatherable layer, and a second abrasion resistant sub-layer is then applied onto the first abrasion resistant sub-layer. The deposition of the abrasion resistant sub-layers is carried out under controlled temperature conditions that reduce adhesion loss within the electroluminescent layer and maintains the electroluminescent functionality of that layer.