Abstract:
A catalyst useful for the production of olefins from alkanes via oxidative dehydrogenation (ODH) is disclosed. The catalyst includes a silicon carbide support. The catalyst may optionally include a base metal, metal oxide, or combination thereof. A base metal is herein defined as a non-Group VIII metal, with the exception of iron, cobalt and nickel. Suitable base metals include Group IB-VIIB metals, Group IIIA-VA metals, Lanthanide metals, iron, cobalt and nickel. Suitable metal oxides include alumina, stabilized aluminas, zirconia, stabilized zirconias (PSZ), titania, ytteria, silica, niobia, and vanadia. Additionally, the catalyst may optionally include a Group VIII promoter. Suitable Group VIII promoters include Ru, Rh, Pd, Os, Ir, and Pt.
Abstract:
Catalysts and methods useful for the production of olefins from alkanes via oxidative dehydrogenation (ODH) are disclosed. The ODH catalysts include a base metal selected from the group consisting of lanthanide metals, their oxides, and combinations thereof. The base metal is more preferably selected from the group consisting of samarium, cerium, praseodymium, terbium, their corresponding oxides and combinations thereof. The base metal loading is preferably between about 0.5 and about 20 weight percent and more preferably between about 2 and about 10 weight percent. Optionally, the ODH catalysts are further comprised of a Group VIII promoter metal present at trace levels. The Group VIII promoter metal is preferably platinum, palladium or a combination thereof and is preferably present at a promoter metal loading of between about 0.005 and about 0.1 weight percent. Optionally, the ODH catalyst is supported on a refractory support.
Abstract:
A process and system for producing synthesis gas by a SPOCnull enhanced catalytic partial oxidation process is disclosed. A reaction in which H2S is partially oxidized to elemental sulfur and water takes place instead of a secondary reaction in which a portion of the light hydrocarbon feed is combusted to form CO2 and water. An increase in yield and selectivity for CO and H2 products results, and readily recoverable elemental sulfur is also produced.
Abstract:
This invention provides a method for recovering rhenium oxide from a material containing rhenium by itself or rhenium in combination with some other element, such as an element catalytically active for a catalytic process, such as hydrogenation, oxidation, reforming, and hydrocracking. The method includes conversion of rhenium to a sublimable oxide via oxidation, heating in an oxidizing atmosphere to sublime the oxide as a volatized oxide, and then isolation of rhenium from the volatized oxide.
Abstract:
A method is disclosed for converting light hydrocarbons (e.g. methane or natural gas) to synthesis gas employing a nonmicroporous, thin shell catalyst that catalyzes a net partial oxidation reaction. Certain preferred catalysts comprise a thin outer layer comprising at least one catalytically active metal disposed on a discrete nonmicroporous support structure. A preferred thin shell catalyst has an effectiveness factor greater than 0.1 when utilized in a partial oxidation reaction.
Abstract:
A method for converting light hydrocarbons (e.g. methane or natural gas) to synthesis gas employs a silicon carbide-supported catalyst that catalyzes a net partial oxidation reaction. Certain preferred catalysts include a catalytically active metal disposed on a silicon carbide support.
Abstract:
A process and catalyst are disclosed for reducing coking in hydrocarbon processing reactions. The preferred embodiments employ a sulfur-containing material such as hydrogen sulfide to reduce catalyst susceptibility to deactivation from carbon deposits formed during processing.