摘要:
Disclosed is a catalyst suitable for the catalytic oxidative cracking of a H2S-containing gas stream, particularly in the event that the stream also contains methane and/or ammonia. The catalyst comprises iron and molybdenum supported by a carrier comprising aluminum. The carrier preferably is alumina. The iron and molybdenum preferably are in the form of sulphides. Also disclosed is a method for the production of hydrogen from a H2S-containing gas stream, comprising subjecting the gas stream to catalytic oxidative cracking so as to form H2 and S2, using a catalyst in accordance with any one of the preceding claims.
摘要:
Disclosed is a catalyst suitable for the catalytic oxidative cracking of a H2S-containing gas stream, particularly in the event that the stream also contains methane and/or ammonia. The catalyst comprises iron and molybdenum supported by a carrier comprising aluminium. The carrier preferably is alumina. The iron and molybdenum preferably are in the form of sulphides. Also disclosed is a method for the production of hydrogen from a H2S-containing gas stream, comprising subjecting the gas stream to catalytic oxidative cracking so as to form H2 and S2, using a catalyst in accordance with any one of the preceding claims.
摘要:
An apparatus for synergistically combining a plasma with a comminution means such as a fluid kinetic energy mill (jet mill), preferably in a single reactor and/or in a single process step is provided by the present invention. Within the apparatus of the invention potential energy is converted into kinetic energy and subsequently into angular momentum by means of wave energy, for comminuting, reacting and separation of feed materials. Methods of use of the apparatus in the practice of various processes are also provided by the present invention.
摘要:
An apparatus for synergistically combining a plasma with a comminution means such as a fluid kinetic energy mill (jet mill), preferably in a single reactor and/or in a single process step is provided by the present invention. Within the apparatus of the invention potential energy is converted into kinetic energy and subsequently into angular momentum by means of wave energy, for comminuting, reacting and separation of feed materials. Methods of use of the apparatus in the practice of various processes are also provided by the present invention.
摘要:
A method of reducing sulfur compounds from an incoming gas stream, comprising flowing the gas stream over a hydrolysis catalyst to convert COS and CS2 to H2S and reduce SO2 to elemental sulfur to form an effluent stream; providing an acidic gas removal unit comprising an absorbent; flowing said effluent stream over said absorbent to produce a stream free of acidic gases; applying an acidic-gas desorption mode to said acidic-gas rich absorbent to produce an acidic gas stream; introducing oxygen to said acidic gas-rich stream; providing a direct oxidation vessel containing catalyst suitable for catalyzing the oxidation of the H2S to sulfur wherein the temperature of the vessel is at or above the sulfur dew point at the reaction pressure; and flowing said acidic gas-rich stream over said catalyst to produce a processed stream having a reduced level of sulfur compounds.
摘要:
The invention discloses an apparatus and process for the reformation of hydrogen containing fluids to hydrogen and other constituents, more particularly, the reformation of hydrocarbons or mixtures of hydrocarbons in a cyclic flow inert porous media reactor for the production of hydrogen and other constituents. In an alternate embodiment, the apparatus and process can be used for the reformation of hydrogen sulfide to produce hydrogen and sulfur.The cyclic flow reactor comprises a reaction chamber filled with a porous media matrix containing an unconstrained reaction zone located in any portion of the reactor chamber. This reactor system employs valves to canalize the reactant mixture and product mixture during flow cycling channeling the reactant mixture through the porous media matrix, and reacting the reactant mixture. In another embodiment, the reactor system may further comprise at least one aperture along the axial length of the reactor casing to enable mounting of an external energy source and/or at least one heat exchanger to provide a source of heat transfer to the inlet pipe and outlet pipe as well as the reactant mixture and product mixtures.
摘要:
A process for making molecular hydrogen, elemental sulfur and sulfur dioxide from hydrogen sulfide. The process involves contacting a gas stream of hydrogen sulfide within a contacting zone with a contacting composition comprising metal sulfide in a lower sulfided state and yielding from the contacting zone a product gas stream comprising hydrogen and a recovered contacting composition comprising metal sulfide in a higher sulfided state. The higher metal sulfide is regenerated with oxygen to yield elemental sulfur and sulfur dioxide.
摘要:
A process for treating acid gases comprising hydrogen sulfide comprises introducing a first acid gas and a first oxygen-containing gas into a reducing furnace to produce a first oxidized gas stream, cooling the first oxidized gas stream in a first heat recovery system, introducing the cooled gas stream into a sulfur condenser to produce a sulfur-stripped gas, introducing the sulfur-stripped gas and a second oxygen-containing gas into an oxidizing furnace to produce a second oxidized gas stream and cooling the second oxidized gas stream in a second heat recovery system. The first acid gas can be acid gas comprising hydrogen sulfide produced in refineries. The spent acid can be spent sulfuric acid from a sulfuric acid alkylation process. The cooled second oxidized gas stream can be further treated in a spent acid recovery plant or a sulfur recovery unit.
摘要:
Sulfur oxides are removed from an oxygen-containing acid gas in configurations and methods in which oxygen is catalytically removed using hydrogen sulfide, and in which the sulfur oxides react with the hydrogen sulfide to form elemental sulfur. A first portion of the remaining sulfurous compounds is reduced to form the hydrogen sulfide for oxygen removal, while a second portion of the sulfurous compounds is further converted to elemental sulfur using a Claus reaction or catalytic direct reduction reaction.