Abstract:
Parallel data is serialized and transmitted and asynchronous data is received and placed into parallel bytes using a hardware assisted interface. The interface can be driven with very little overhead to the DSP. Additional timing registers and enhanced data buffers decrease the necessary DSP resource commitment. Furthermore the hardware settings in the interface can be adjusted by the DSP to optimize the interface's performance in transmitting various asynchronous protocols.
Abstract:
In a system having an DSP, an ASIC and a memory, in which the ASIC generates a number of different competing interrupts for the DSP to service, the ASIC has an interrupt request control module which automatically provides the DSP with a vector pointing to the memory location of the interrupt service routine for the currently pending interrupt request having the highest priority of all pending requests. The DSP reads this vector and uses it to access the interrupt service routine in the memory. Reading of this vector causes the interrupt request to be de-asserted, which causes the next highest priority pending interrupt request to become the highest priority pending interrupt request. As a result, a new vector is presented for the next read by the DSP.
Abstract:
An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to intravascular introduction of the catheter. The ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode. In another embodiment, ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart.
Abstract:
A guidance system for assisting with the insertion of a needle or other medical component into the body of a patient is disclosed. The guidance system utilizes ultrasound imaging or other suitable imaging technology. In one embodiment, the guidance system comprises an imaging device including a probe for producing an image of an internal body portion target, such as a vessel. One or more sensors are included with the probe. The sensors sense a detectable characteristic related to the needle, such as a magnetic field of a magnet included with the needle. The system includes a processor that uses data relating to the detectable characteristic sensed by the sensors to determine a position and/or orientation of the needle in three spatial dimensions. The system includes a display for depicting the position and/or orientation of the needle together with the image of the target.
Abstract:
A guidance system for assisting with the insertion of a needle or other medical component into the body of a patient is disclosed. The guidance system utilizes ultrasound imaging or other suitable imaging technology. In one embodiment, the guidance system comprises an imaging device including a probe for producing an image of an internal body portion target, such as a vessel. One or more sensors are included with the probe. The sensors sense a detectable characteristic related to the needle, such as a magnetic field of a magnet included with the needle. The system includes a processor that uses data relating to the detectable characteristic sensed by the sensors to determine a position and/or orientation of the needle in three spatial dimensions. The system includes a display for depicting the position and/or orientation of the needle together with the image of the target.
Abstract:
The present invention synthesizes a prescribed impedance. The impedance is synthesized by generating a current having a value substantially equal to a voltage divided by a prescribed impedance. Sensing the line voltage and converting that sensed line voltage to its digital equivalent accomplish this first step. The digital line voltage is processed by a factor related to the prescribed impedance to produce an output voltage that has a value substantially equal to the sensed voltage divided by the prescribed impedance. The output voltage controls a voltage to current converter that generates the appropriate current across the points or terminals where the line voltage was measured. Thus, the prescribed impedance is generated across these points or terminals because the line voltage divided by the generated current is substantially equal to the prescribed impedance.
Abstract:
A system and circuit is provided for digitally synthesizing the impedance of a transfer function. The impedance of the transfer function is digitally synthesized by generating a current that, when combined with an input voltage, results in the impedance of the transfer function. This is accomplished by sensing the input signal and processing it with a generator or multiplier such that a voltage is produced. The produced voltage controls a current source and creates a current having a value equal to the inverse of the transfer function impedance. The sensed or input voltage divided by the generated current is equal to the impedance of the transfer function. In this manner, many different transfer functions can be digitally synthesized without having to design an alternate circuit.
Abstract:
The present invention relates to improved adaptive filtering techniques and architectures. Preferably, this filtering is performed as part of the digital processing that occurs with a digital signal processor. It is a feature of this invention that the adaptive filtering taught herein provides the advantages of both serial and parallel architectures, without the accompanying disadvantages thereof. In particular, an adaptive filter is taught that possesses low pin counts, fast processing times suitable for high-speed applications and reduced numbers of filter elements. In a preferred embodiment, the inputs and outputs of the adaptive filter are supplied to and from the adaptive filter in a serial manner while the processing is performed internally within the adaptive filter in a parallel manner. The parallel processing is preferably effected by a delayed least-means-squares algorithm implemented using a single adder, a single multiplier and a single multiplier-accumulator instead of by numerous such adders, multipliers and multiplier-accumulators.
Abstract:
An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor unit for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a field produced by a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter. ECG signal-based catheter tip guidance is included to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart. The stylet includes an electromagnetic coil that can be operably connected to the sensor unit and/or console through a sterile barrier without compromising the barrier. The stylet can also be wirelessly connected to the sensor unit and/or console.