摘要:
An image sensor includes a pixel array, a bit line, a supplemental capacitance node line, and a control circuit. The pixel array includes a plurality of pixel cells each including a floating diffusion (“FD”) node and a photosensitive element coupled to selectively transfer image charge to the FD node. The bit line is coupled to selectively conduct image data output from a first group of the pixel cells. The supplemental capacitance node line is coupled to the FD node of a second group of the pixel cells different from the first group. The control circuit is coupled to the supplemental capacitance node line to selectively increase the potential at the FD node of each of the pixel cells of the second group by selectively asserting a FD boost signal on the supplemental capacitance node line.
摘要:
An image sensor includes a pixel array, a bit line, supplemental capacitance node line, and a supplemental capacitance circuit. The pixel array includes a plurality of pixel cells each including a floating diffusion (“FD”) node and a photosensitive element coupled to selectively transfer image charge to the FD node. The bit line is coupled to selectively conduct image data output from a first group of the pixel cells. The supplemental capacitance node line is coupled to the FD node of a second group of the pixel cells to selectively couple a supplemental capacitance to the FD nodes of the second group in response to a control signal. In various embodiments, the first and second group of pixel cells may be the same group or a different group of the pixel cells and may add a capacitive boost feature or a multi conversion gain feature.
摘要:
Techniques and mechanisms for improving full well capacity for pixel structures in an image sensor. In an embodiment, a first pixel structure of the image sensor includes an implant region, where a skew of the implant region corresponds to an implant angle, and a second pixel structure of the image sensor includes a transfer gate. In another embodiment, an offset of the implant region of the first pixel structure from the transfer gate of the second pixel structure corresponds to the implant angle.
摘要:
An array of pixels is formed using a semiconductor layer having a frontside and a backside through which incident light is received. Each pixel typically includes a photosensitive region formed in the semiconductor layer and a trench formed adjacent to the photosensitive region. The trench causes the incident light to be directed away from the trench and towards the photosensitive region.
摘要:
An array of pixels is formed using a substrate having a frontside and a backside that is for receiving incident light. Each pixel typically includes metallization layers included in the frontside of the substrate, a photosensitive region formed in the backside of the substrate, and a trench formed around the photosensitive region in the backside of the substrate. The trench causes the incident light to be directed away from the trench and towards the photosensitive region.
摘要:
An array of pixels is formed using a substrate having a frontside and a backside that is for receiving incident light. Each pixel typically includes metallization layers included in the frontside of the substrate, a photosensitive region formed in the backside of the substrate, and a trench formed around the photosensitive region in the backside of the substrate. The trench causes the incident light to be directed away from the trench and towards the photosensitive region.
摘要:
An array of pixels is formed using a substrate, where each pixel has a substrate having a backside and a frontside that includes metalization layers, a photodiode formed in the substrate, frontside P-wells formed using frontside processing that are adjacent to the photosensitive region, and an N-type region formed in the substrate below the photodiode. The N-type region is formed in a region of the substrate below the photodiode and is formed at least in part in a region of the substrate that is deeper than the depth of the frontside P-wells.
摘要:
An array of pixels is formed using a substrate, where each pixel has a substrate having a backside and a frontside that includes metalization layers, a photodiode formed in the substrate, frontside P-wells formed using frontside processing that are adjacent to the photosensitive region, and an N-type region formed in the substrate below the photodiode. The N-type region is formed in a region of the substrate below the photodiode and is formed at least in part in a region of the substrate that is deeper than the depth of the frontside P-wells.
摘要:
An image sensor includes a pixel array, a bit line, a supplemental capacitance node line, and a control circuit. The pixel array includes a plurality of pixel cells each including a floating diffusion (“FD”) node and a photosensitive element coupled to selectively transfer image charge to the FD node. The bit line is coupled to selectively conduct image data output from a first group of the pixel cells. The supplemental capacitance node line is coupled to the FD node of a second group of the pixel cells different from the first group. The control circuit is coupled to the supplemental capacitance node line to selectively increase the potential at the FD node of each of the pixel cells of the second group by selectively asserting a FD boost signal on the supplemental capacitance node line.
摘要:
An image sensor includes a pixel array, a bit line, supplemental capacitance node line, and a supplemental capacitance circuit. The pixel array includes a plurality of pixel cells each including a floating diffusion (“FD”) node and a photosensitive element coupled to selectively transfer image charge to the FD node. The bit line is coupled to selectively conduct image data output from a first group of the pixel cells. The supplemental capacitance node line is coupled to the FD node of a second group of the pixel cells to selectively couple a supplemental capacitance to the FD nodes of the second group in response to a control signal. In various embodiments, the first and second group of pixel cells may be the same group or a different group of the pixel cells and may add a capacitive boost feature or a multi conversion gain feature.