Abstract:
A system and method for determining rotor speed of an AC induction machine is disclosed. The system is programmed to estimate a rotor speed of the induction machine according to a linear speed estimation algorithm and based on name plate information (NPI) of the induction machine and parameters of the AC induction machine during operation thereof. The rotor speed estimation system is also programmed to estimate a rotor speed of the AC induction machine according to a frequency-domain signal processing algorithm and determine if the rotor speed estimated thereby is valid. If the rotor speed estimated by the frequency-domain signal processing algorithm is valid, then a tuned rotor speed of the AC induction machine is estimated according to the linear speed estimation algorithm and based, in part, on the rotor speed estimated by the frequency-domain signal processing algorithm.
Abstract:
A system and method for detecting, localizing and quantifying stator winding faults in AC electrical machines is disclosed. A diagnostic system configured to detect a stator winding fault in an AC electrical machine includes a processor programmed to receive measurements of three-phase voltages and currents provided to the AC electrical machine from voltage and current sensors associated with the electrical distribution circuit, compute positive, negative and zero sequence components of voltage and current from the three-phase voltages and currents, and calculate a fault severity index (FSI) based on at least a portion of the positive, negative and zero sequence components of voltage and current, wherein calculating the FSI further comprises identifying a voltage gain in one or more phases of the AC electrical machine due to a stator winding fault and localizing the stator winding fault to one or more phases in the AC electrical machine.
Abstract:
A system and method for detecting and localizing excess voltage drop in single or multiple phases of three-phase AC circuits is disclosed. An electrical distribution circuit is provided that includes an input connectable to an AC source, an output connectable to terminals of an electrical machine, the output configured to provide three-phase voltages and currents to the electrical machine, and a diagnostic system configured to detect an excess voltage drop (EVD) in the electrical distribution circuit. The diagnostic system includes a processor that is programmed to receive measurements of the three-phase voltages and currents provided to the electrical machine, compute a negative sequence voltage from the three-phase voltages and currents, determine a localization reference phase angle for each phase based in part on the three-phase voltages and currents, and calculate an EVD in the electrical distribution circuit based on the negative sequence voltage and the localization reference phase angles.
Abstract:
An evaporative emissions control system includes a first vent valve configured to selectively open and close a first vent, a second vent valve configured to selectively open and close a second vent, a fuel level sensor configured to sense a fuel level in the fuel tank, a pressure sensor configured to sense a pressure in the fuel tank, an accelerometer configured to measure an acceleration of the vehicle, and a controller configured to regulate operation of the first and second vent valves to provide pressure relief for the fuel tank. The controller is programmed to determine if a refueling event is occurring based one signals indicating the fuel level is increasing, the pressure in the fuel tank is increasing, and the vehicle is not moving, and open at least one of the first and second vent valves based on determining the refueling event is occurring.
Abstract:
A system and method for detecting excess voltage drop (EVD) in a three-phase electrical distribution circuit includes a diagnostic system comprising a processor that is programmed to receive three-phase voltages and currents provided to terminals of the electrical machine, determine fundamental components of the three-phase voltages and currents provided to the terminals, and compute positive, negative, and zero sequence currents from the fundamental components. The processor is also programmed to extract a compensated negative sequence current from the negative sequence current component, add the compensated negative sequence current to the positive sequence current to determine fault reference current phasors, determine a negative current reference phase angle for each phase based in part on a phase angle of the positive sequence current, and identify an EVD fault in the electrical distribution circuit based on the compensated negative sequence current, the fault reference current phasors, and the negative current reference phase angles.
Abstract:
A fuel tank system constructed in accordance to one example of the present disclosure includes a fuel tank, a first vent tube, an evaporative emissions control system and a cam driven tank venting control assembly. The first vent tube is disposed in the fuel tank. The evaporative emissions control system is configured to recapture and recycle emitted fuel vapor. The evaporative emissions control system has a controller. The cam driven tank venting control assembly has a rotary actuator that rotates a cam assembly based on operating conditions. The cam assembly has at least a first cam having a first cam profile configured to selectively open and close the first vent tube based on operating conditions.
Abstract:
A diagnostic system configured to detect a stator winding fault in an electrical machine comprising a plurality of stator windings is provided. The diagnostic system includes a processor programmed to receive measurements of three-phase voltages and currents provided to the electrical machine, compute positive, negative, and zero sequence components of voltage and current from the three-phase voltages and currents, and identify a noise factor contribution and a stator fault contribution to the negative sequence voltage by performing a two-step initialization algorithm comprising a modified recursive least square (RLS) method, the noise factor contribution comprising unbalance in the electrical machine resulting from one or more of positive sequence current, negative sequence current, and positive sequence voltage. The processor is still further programmed to detect a stator fault in the electrical machine based on the stator fault contribution to the negative sequence voltage.
Abstract:
A system and method for detecting a phase-to-ground fault in an AC electrical machine operates to receive measurements of three-phase voltages and currents provided to the AC electrical machine, compute at least one of a zero sequence component and a negative sequence component of voltage and current from the three-phase voltages and currents, and calculate a fault severity index (F SI) based on the zero or negative sequence component of voltage and current, so as to identify a phase-to-ground fault in the AC electrical machine. Calculating the FSI further includes determining a total value of the zero or negative sequence current, determining a noise-contributed value of the zero or negative sequence current included in the total value, determining a compensated value of the zero or negative sequence current based on the total value and the noise-contributed value, and calculating the FSI based on the compensated value.
Abstract:
A system and method for detecting and localizing excess voltage drop in single or multiple phases of three-phase AC circuits is disclosed. An electrical distribution circuit is provided that includes an input connectable to an AC source, an output connectable to terminals of an electrical machine, the output configured to provide three-phase voltages and currents to the electrical machine, and a diagnostic system configured to detect an excess voltage drop (EVD) in the electrical distribution circuit. The diagnostic system includes a processor that is programmed to receive measurements of the three-phase voltages and currents provided to the electrical machine, compute a negative sequence voltage from the three-phase voltages and currents, determine a localization reference phase angle for each phase based in part on the three-phase voltages and currents, and calculate an EVD in the electrical distribution circuit based on the negative sequence voltage and the localization reference phase angles.
Abstract:
A system and method for detecting, localizing and quantifying stator winding faults in AC electrical machines is disclosed. A diagnostic system configured to detect a stator winding fault in an AC electrical machine includes a processor programmed to receive measurements of three-phase voltages and currents provided to the AC electrical machine from voltage and current sensors associated with the electrical distribution circuit, compute positive, negative and zero sequence components of voltage and current from the three-phase voltages and currents, and calculate a fault severity index (FSI) based on at least a portion of the positive, negative and zero sequence components of voltage and current, wherein calculating the FSI further comprises identifying a voltage gain in one or more phases of the AC electrical machine due to a stator winding fault and localizing the stator winding fault to one or more phases in the AC electrical machine.