Abstract:
An engine includes a cylinder head and a cylinder block connected to the cylinder head at an interface. A compression relief valve is substantially inset in the cylinder head of the engine. The compression relief valve is connected to an engine control module via a wire harness. The compression relief valve includes a body having a bore. Further, the compression relief valve includes a needle inset in the bore. The compression relief valve includes a compression relief valve sensor assembly disposed in at least one of the body or the needle. The compression relief valve sensor assembly is configured to generate a cylinder head temperature signal proportional to a cylinder head temperature at the interface.
Abstract:
A fuel system for an engine is disclosed. The fuel system may have a first fuel injector configured to inject a first stream of gaseous fuel radially into a combustion chamber of a cylinder of the engine through a first air intake port. The fuel system may also have a second fuel injector configured to inject a second stream of gaseous fuel radially into the combustion chamber through a second air intake port to collide with the first stream of gaseous fuel.
Abstract:
A fuel system for an engine is disclosed. The fuel system may include a gaseous fuel injector configured to inject gaseous fuel into a cylinder of the engine. The gaseous fuel injector may include an end fluidly connected to an air intake port and a tip creating an axial flow path for the gaseous fuel directed toward a center of the cylinder. The fuel system may also include a blocking member located in the axial flow path at a distal end of the tip. The blocking member may include at least one aperture to allow the gaseous fuel to pass through the blocking member on the axial flow path.
Abstract:
A fuel system for an engine has a cylinder with an inlet air port, an air box surrounding the inlet air port, and a gaseous fuel injector positioned in the air box and having a nozzle located at the inlet air port. The fuel system also has a gaseous fuel control valve, a fuel supply line fluidly extending from the gaseous fuel control valve to the gaseous fuel injector, a purge valve, and a purge fluid supply line fluidly extending from the purge valve to at least one of the fuel supply line and the gaseous fuel injector. The fuel system also has a return valve and a return line fluidly extending from at least one of the fuel supply line and the gaseous fuel injector.
Abstract:
A fuel system for an engine is disclosed. The fuel system may have a fuel injector configured to inject fuel into a cylinder of the engine. The fuel system may also have a first fuel supply line configured to supply liquid fuel to the fuel injector to cool the fuel injector. The fuel system may further have a second fuel supply line configured to direct fuel from the fuel injector back to the fuel injector for discharge into a cylinder of the engine.
Abstract:
A method to rotate crankshaft of an engine via a pneumatic system is disclosed herein. The engine includes a plurality of engine cylinders. The pneumatic system has an air compressor and a plurality of valves. The method includes monitoring angular orientation of the crankshaft and determining the position of the piston of the plurality of engine cylinders. An engine cylinder amongst the plurality of engine cylinders is selected with the piston in one of a power stroke or a compression stroke. A valve corresponding to the engine cylinder is activated. Upon activation of the valve, compressed air is supplied to the engine cylinder by the air compressor. The valve is then deactivated as the piston attains completion of one power stroke or one compression stroke. The activation, supply, and deactivation are sequentially repeated for each of the plurality of engine cylinders, based on predetermined firing order of the engine.
Abstract:
A pressure management system for a storage tank of liquefied natural gas (LNG) is disclosed. The storage tank includes an outlet, an ullage space, and a condenser coil. The pressure management system includes a boil-off gas (BOG) shut-off valve, an expansion valve, a vortex tube, and a combustor. The BOG shut-off valve connected to the outlet, facilitate passage of a BOG stream when the storage tank is at a threshold pressure. The BOG stream is expanded in the expansion valve and passed through the vortex tube to split the BOG stream into a hot stream and a cold stream. The cold stream is passed through the condenser coil present in the ullage space of the tank to cool and condense the BOG inside the storage tank. The hot stream and the cold stream are combusted in the combustor to produce power.
Abstract:
A connecting rod assembly is disclosed for use with an engine. The connecting rod assembly may include a first connecting rod having a first end configured to pivotally connect to a first piston and a second can with a circular opening configured to receive a throw of a crankshaft. The connecting rod assembly may also include a second connecting rod having a first end configured to pivotally connect to a second piston and a second end with a circular opening configured to receive the throw of the crankshaft. The second connecting rod may have a running surface defining at least two outer lands and at least one inner land disposed between the at least two outer lands that alternately support a load of the second piston. Both the at least one inner and the at least two outer lands may simultaneously support the load of the second piston at a point of highest load on the second piston.
Abstract:
A system for the exchange of thermal energy generated by electrical components in an electrical locker to a flow of a liquefied gas is provided. The system includes a storage container for cryogenically storing the liquefied gas at low pressure, a heat exchanger configured into the electrical locker, and a cryogenic pump in fluid communication with the storage container. The cryogenic pump pressurizes the liquefied gas received from the storage container to a higher pressure and pumps the pressurized liquefied gas to a location where vaporization of the liquefied gas into a gaseous form is performed using the thermal energy drawn from the electrical locker by the heat exchanger.
Abstract:
A retrofit kit for converting a single-fuel engine having an air box to run on two different fuels is disclosed. The kit may have at least one gaseous fuel injector mountable inside the air box and associated with each cylinder of the engine. The kit may further have a common flow regulator. The kit may also have at least one individual fuel supply line configured to connect the common flow regulator to the at least one gaseous fuel injector. The kit may additionally have a fuel supply and a common fuel supply line configured to connect the common flow regulator to the fuel supply.