Abstract:
New sulfide metal catalysts are described, containing Ni, Mo and W, an element Z selected from Si, Al and mixtures thereof, and possibly an organic residue, obtained by sulfidation of mixed oxide precursors, also new, characterized in that they comprise an amorphous phase and a wolframite iso structural crystalline phase, the crystallinity degree of said mixed oxides being higher than 0 and lower than 100%, preferably higher than 0 and lower than 70%. The catalysts of the invention are useful as hydrotreatment catalysts, and in particular as hydrodesulfurization, hydrodenitrogenation and/or hydrodearomatization catalysts.
Abstract:
New sulfide metal catalysts are described, containing Ni, Mo and W, an element Z selected from Si, Al and mixtures thereof, and possibly an organic residue, obtained by sulfidation of mixed oxide precursors, also new, characterized in that they comprise an amorphous phase and a wolframite iso structural crystalline phase, the crystallinity degree of said mixed oxides being higher than 0 and lower than 100%, preferably higher than 0 and lower than 70%. The catalysts of the invention are useful as hydrotreatment catalysts, and in particular as hydrodesulfurization, hydrodenitrogenation and/or hydrodearomatization catalysts.
Abstract:
New sulfided metal catalysts are described, containing a metal X selected from Ni, Co and mixtures thereof, a metal Y selected from Mo, W and mixtures thereof, an element Z selected from Si, Al and mixtures thereof, and possibly an organic residue, obtained by the sulfidation of mixed oxide precursors, also new, having general formula (A) XaYbZcOd.pC (A) possibly shaped without a binder, or by sulfidation of mixed oxides having formula (A), in shaped form with a binder, wherein X is selected from Ni, Co and mixtures thereof, Y is selected from Mo, W and mixtures thereof, Z is selected from Si, Al and mixtures thereof, O is oxygen, C is selected from: a nitrogenated compound N, an organic residue deriving from the partial calcination of the nitrogenated compound N, said nitrogenated compound N, when present, being selected from: a) an alkyl ammonium hydroxide having formula (I) RIRIIRIIIRIVNOH (I) wherein the groups RIRIV, the same or different, are aliphatic groups containing from 1 to 7 carbon atoms, b) an amine having formula (II) R1R2R3N (II) wherein R1 is a linear, branched or cyclic alkyl, containing from 4 to 12 carbon atoms, and R2 and R3, the same or different, are selected from H and a linear, branched or cyclic alkyl, containing from 4 to 12 carbon atoms, said alkyl being equal to or different from R1, a, b, c, d are the number of moles of the elements X, Y, Z, O, respectively, p is the weight percentage of C with respect to the total weight of the precursor having formula (A), a, b, c, d are higher than 0 a/b is higher than or equal to 0.3 and lower than or equal to 2, (a+b)/c is higher than or equal to 0.3 and lower than or equal to 10, preferably varying from 0.8 to 10 d=(2a+6b+Hc)/2 wherein H=4 when Z=Si H=3 when Z=Al and p is higher than or equal to 0 and lower than or equal to 40%. Said catalysts can be used as hydrotreating catalysts.
Abstract:
A process for the production of an optically selective coating of a receiver substrate of a suitable material for solar receiver devices particularly suitable for operating at high temperatures, more specifically for receiver tubes of linear parabolic trough, which comprises: deposition of a layer reflecting infrared radiation consisting of a high-melting metal on a heated receiver substrate of a suitable material; annealing under the same temperature and pressure conditions as the deposition of the reflecting layer; deposition on the high-melting metal of one or more layers of metal-ceramic composite materials (CERMET), wherein the metal is W and the ceramic matrix is YPSZ (“Yttria-Partially Stabilized Zirconia”); deposition on the cermet of an antireflection layer; annealing under the same temperature and pressure conditions as the depositions of the cermet and antireflection layers.
Abstract:
A process for the production of an optically selective coating of a receiver substrate of a suitable material for solar receiver devices particularly suitable for operating at high temperatures, more specifically for receiver tubes of linear parabolic trough, which comprises: deposition of a layer reflecting infrared radiation consisting of a high-melting metal on a heated receiver substrate of a suitable material; annealing under the same temperature and pressure conditions as the deposition of the reflecting layer; deposition on the high-melting metal of one or more layers of metal-ceramic composite materials (CERMET), wherein the metal is W and the ceramic matrix is YPSZ (“Yttria-Partially Stabilized Zirconia”); deposition on the cermet of an antireflection layer; annealing under the same temperature and pressure conditions as the depositions of the cermet and antireflection layers.