Abstract:
Systems and methods are provided for integration of polymeric waste co-processing in cokers to produce circular chemical products from coker gas oil, including a method of producing circular chemical products comprising: providing a coker gas oil that is at least partially derived from polymeric waste, wherein the coker gas oil has a paraffin content of about 5 wt % to about 50 wt %, a sulfur content of about 0.1 wt % to about 7 wt %, and a halide content of about 0.1 wppm to about 5 wppm; and converting the coker gas oil into at least a polymer.
Abstract:
Systems, methods, and apparatus for distribution of oxygen-containing gas within a gas-liquid oxidation reaction are provided herein. The invention is particularly suited for oxidation of liquid-phase organic reactants with oxidizing gas, such as the oxidation of cyclohexylbenzene to cyclohexylbenzene hydroperoxide using an oxygen-containing gas. The oxygen-containing gas is distributed through a gas distributor and into a liquid-phase reaction medium within an oxidation reactor. In some aspects, this achieves a high degree of uniformity of oxygen concentration within the liquid-phase reaction medium. The gas distributor is disposed within a lower portion of the reactor, and may comprise a network of conduits in fluid communication with each other, which are arranged within a plane that is substantially parallel to a bottom surface of the reactor. A plurality of orifices are disposed on the conduits, such that oxygen-containing gas flows through the conduits and into the liquid-phase reaction medium via the orifices.
Abstract:
Method for concentrating an organic hydroperoxide mixture comprising a hydrocarbon and a hydroperoxide corresponding thereto comprises evaporating a first liquid mixture in a thin-film evaporation device followed by separation in a separation zone. Both the evaporation device and the separation zone operate at a low absolute pressure at a temperature lower than the thermal degradation temperature of the hydroperoxide to prevent thermal decomposition thereof. The process is particularly useful for concentrating an oxidation product made from the oxidation of cyclohexylbenzene.
Abstract:
A reactor with minimal dead volume especially suited to reverse-flow applications comprises: a) a reactor body; b) a first head engaged with said reactor body; c) a first conduit extending from outside said head to at least partially through said head; and d) a first valve in flow communication with said first conduit controlling fluid flow along a flow path extending from the first valve and through the reactor body. The reactor is especially suited for use in a process for rapid stream-switching of at least two streams in a reverse-flow reactor.
Abstract:
A reactor with minimal dead volume especially suited to reverse-flow applications comprises: a) a reactor body; b) a first head engaged with said reactor body; c) a first conduit extending from outside said head to at least partially through said head; and d) a first valve in flow communication with said first conduit controlling fluid flow along a flow path extending from the first valve and through the reactor body. The reactor is especially suited for use in a process for rapid stream-switching of at least two streams in a reverse-flow reactor.
Abstract:
Systems and methods are provided for integration of polymeric waste co-processing in cokers to produce circular chemical products from coker gas, including a method of producing circular chemical products comprising: providing a coker gas that is at least partially derived from polymeric waste, wherein the coker gas has an olefin content of about 10 wt % to about 30 wt %, a sulfur content of about 0.5 wt % to about 5 wt %, and a total halide content of about 1 wppm to about 150 wppm; and oxygen-containing compounds in an amount of about 0.5 wt % to about 15 wt %; and converting the coker gas into at least a polymer.
Abstract:
In a process for producing phenol and cyclohexanone, reaction components comprising cyclohexylbenzene hydroperoxide and an acid catalyst are supplied to a cleavage reaction zone, mixed under mixing conditions effective to combine the reaction components into a reaction mixture and at least part of the cyclohexylbenzene hydroperoxide in the reaction mixture is converted under cleavage conditions to into phenol and cyclohexanone; and a cleavage effluent is recovered from the cleavage reaction zone. The cleavage and mixing conditions are controlled such that the ratio tR/tM is at least 10, where tR is the half-life of cyclohexylbenzene hydroperoxide under the cleavage conditions and tM is the time required after injection of a tracer material into the reaction mixture under the mixing conditions for at least 95% by volume of the entire reaction mixture to attain at least 95% of the volume-averaged tracer material concentration.
Abstract:
A process for producing phenol and/or cyclohexanone by cleaving cyclohexylbenzene hydroperoxide in a loop cleavage reactor comprising multiple reaction zones connected in series. In desirable embodiments, fresh cyclohexylbenzene hydroperoxide feed(s) are supplied to reaction zones the final reaction zone, and fresh acid catalyst is supplied only to the final reaction zone. In desirable embodiments, a portion of the effluent exiting the final reaction zone is recycled to the first reaction zone. Each reaction zone is equipped with a heat exchanger downstream of the feed port to extract heat generated from the cleavage reaction.
Abstract:
A process for oxidizing a first hydrocarbon to a corresponding first oxygenate by feeding a first feedstock comprising the first hydrocarbon into an oxidation reactor, contacting the reaction medium with a gas stream comprising O2 in the oxidation reactor, and supplying a hydroperoxide additive to the oxidation reactor. By including the hydroperoxide additive in the reaction medium, foaming at and/or close to the beginning of the oxidation reaction can be significantly reduced.
Abstract:
Systems and methods are provided for integration of a reactor for polyolefin pyrolysis with the effluent processing train for a steam cracker. The polyolefins can correspond to, for example, polyolefins in plastic waste. Integrating a process for polyolefin pyrolysis with a steam cracker processing train can allow a mixture of polymers to be converted to monomer units while reducing or minimizing costs and/or equipment footprint. This can allow for direct conversion of polyolefins to the light olefin monomers in high yield while significantly lowering capital and energy usage due to integration with a steam cracking process train. The integration can be enabled in part by selecting feeds with appropriate mixtures of various polymer types and/or by limiting the volume of the plastic waste pyrolysis product relative to the volume from the steam cracker(s) in the steam cracking process train. By selecting plastic waste and/or other polyolefin sources with an appropriate mixture of polyolefins as the feedstock, the resulting polyolefin pyrolysis product can be separated in a steam cracking process train to produce separate fractions for various polymer grade small olefin products.