Abstract:
A hydrogen production system (X1) according to the present invention includes a reforming apparatus (Y1) having a vaporizer (1) and a reforming reactor (2), and a PSA apparatus (5). In the vaporizer (1) a mixed material (hydrocarbon-based material, water, and oxygen) is heated and vaporized. In the reforming reactor (2), steam reforming reaction and partial oxidation reaction of the hydrocarbon-based material take place at a time, so that reformed gas (containing hydrogen) is led out from the vaporized mixed material. In the PSA apparatus (5), the reformed gas is introduced into an adsorption tower loaded with an adsorbing agent, so that an unnecessary component in the gas is adsorbed by the adsorbing agent and hence hydrogen-rich gas is led out of the tower, while the unnecessary component is desorbed from the adsorbing agent, so that hydrogen-containing desorbed gas that contains the unnecessary component and hydrogen remaining in the tower is discharged out of the tower. The desorbed gas is burnt in the vaporizer (1), and combustion gas generated by burning the desorbed gas is utilized as a heat source to heat the mixed material.
Abstract:
A desulfurizer includes a filled chamber having a raw fuel passage through which a raw fuel flows, the filled chamber being filled with a desulfurizing agent, a supply chamber disposed upstream of the filled chamber, for uniformly supplying the raw fuel to the raw fuel passage, and a discharge chamber disposed downstream of the filled chamber, for uniformly discharging the raw fuel from the raw fuel passage. The raw fuel passage has first and second reversers for reversing the direction in which the raw fuel flows. The raw fuel passage has a cross-sectional area which is smaller in a downstream portion thereof than in an upstream portion thereof.
Abstract:
A desulfurizer includes a filled chamber having a raw fuel passage through which a raw fuel flows, the filled chamber being filled with a desulfurizing agent, a supply chamber disposed upstream of the filled chamber, for uniformly supplying the raw fuel to the raw fuel passage, and a discharge chamber disposed downstream of the filled chamber, for uniformly discharging the raw fuel from the raw fuel passage. The raw fuel passage has first and second reversers for reversing the direction in which the raw fuel flows. The raw fuel passage has a cross-sectional area which is smaller in a downstream portion thereof than in an upstream portion thereof.
Abstract:
Described herein are fuel cell systems and methods of using fuel cell systems. The systems include a fuel cell that generates electrical energy using hydrogen and a fuel processor that produces hydrogen from a fuel source. The fuel processor includes a reformer and a burner that heats the reformer. One heat efficient fuel cell system described herein heats internal portions of a fuel cell using a heating medium from a fuel processor. The heating medium may comprise gases exhausted at high temperatures from the fuel processor, which are then transported to the fuel cell. The heating medium may also include a gas that reacts catalytically in the fuel cell to produce heat. Systems and methods for expediting fuel cell system start up are provided. Methods for shutting down a fuel cell system are also described that reduce the amount of moisture and gases in the reformer and in one or more fuel cell components. One hydrogen efficient fuel cell system described herein transports hydrogen to an inlet of a burner. The hydrogen may comprise unused hydrogen from a fuel cell and/or hydrogen produced in a reformer. The burner comprises a catalyst that facilitates production of heat in the presence of the hydrogen.
Abstract:
A horizontal chemical reactor comprises at least one catalytic bed (5a-5d) arranged horizontally in the reactor and comprising a lower gas-permeable wall (6) for gas outlet, and a holding element (2) of the at least one catalytic bed.
Abstract:
A reaction apparatus includes: a chemical reaction unit for causing a reaction of a reactant by being set to a predetermined temperature and by being supplied with the reactant, a heat insulation package for housing the chemical reaction unit therein, an abnormality detector for detecting at least one of a temperature abnormality of the chemical reaction unit and the heat insulation package, and a cooling unit for flowing a cooling fluid to the chemical reaction unit to stop the reaction according to a detection result by the abnormality detector. In the reaction apparatus, the leakage of heat inside the reaction apparatus to outside is prevented when abnormality occurs to the chemical reaction unit and the heat insulation package.
Abstract:
A catalytic reactor system especially useful for hydrogenation, dehydrogenation, hydrocarbon isomerization, and hydrocracking was demonstrated for isomerizing 1-butene to 2-butene. The reactor system includes a noble metal-containing catalyst bed and a base-metal catalyst bed in physical contact with but substantially unmixed with the noble metal catalyst bed. The reactor includes a gas inlet for sending hydrogen to the noble metal catalyst and an inlet for sending 1-butene to the second catalyst bed. An outlet is provided for product and unreacted hydrogen and 1-butene. The reactor system is configured such that hydrogen flows through the noble metal catalyst bed first and then through the base-metal catalyst bed, while 1-butene flows through the base metal catalyst bed, with minimal backflow through noble metal bed.
Abstract:
The reactive distillation is carried out in a column (1) with a packing (2) which is at least partly designed as a catalyst carrier (23). Fluids (3, 4) which form two phases of different densities flow through the packing. An internal volume flow (300) is set for the denser fluid (3), the value of which lies in an interval (I) about a distinguished value (a), with this value being associated with a dwell time distribution (32) of the denser fluid: For the distinguished value the variance (s) of the dwell time distributionnullas a function of the internal volume flownulltakes on a minimum; and at the boundaries of the named interval the internal volume flow does not differ from the distinguished value by more than 30%, preferably by more than 10%.
Abstract:
An auto-oxidation and internal heating type reforming method and apparatus for hydrogen production are disclosed for use in a process in which a gaseous mixture of a hydrocarbon or an aliphatic alcohol with water vapor is fed into contact with a mass of a reforming catalyst to bring about a reforming reaction of the gaseous mixture to produce hydrogen, wherein a small amount of an oxidizing catalyst is admixed with the reforming catalyst in that mass; and a small amount of oxygen is admixed with the gaseous mixture, whereby a portion of the hydrocarbon or aliphatic alcohol is exothermally oxidized to generate a quantity of heat required to reform the gaseous mixture of the hydrocarbon or aliphatic alcohol with water vapor.
Abstract:
The present invention relates to a process and to a device for manufacturing synthetic gas. The reactor in accordance with the invention comprises within a single housing: a non catalytic combustion chamber (1) comprising at least one fuel injection element (2) and at least one oxidizer injection element (3) so as to achieve a partial combustion in said chamber referred to as "sufficient residence time chamber", and at least one catalytic bed (4) into which the gases coming from combustion chamber (1) run, and further comprising at least one additional oxidizer injection element (6) and at least one fuel injection element (7). The reactor and the process in accordance with the invention may be applied to any chemical manufacturing utilizing synthetic gas.