摘要:
The present invention provides a process and a system for coking and simultaneous upgrading of a heavy hydrocarbon feedstock. More particularly the present invention relates to a process of cracking heavy hydrocarbon feedstock employing high heat carrier, incorporated with weak acid sites for improving the liquid yield and reducing coke yield. The feedstock is vaporized and brought in contact with a heat carrier material to produce a product stream and separating the product stream from the particulate heat carrier, regeneration of the particulate heat carrier to the extent of 10-30% and collecting a gaseous and liquid product from the product stream.
摘要:
The invention relates to a process for converting hydrocarbons into unsaturated products such as acetylene and/or ethylene. The invention also relates to converting acetylene to olefins such as ethylene and/or propylene, to polymerizing the olefins, and to equipment useful for these processes.
摘要:
A reactor with minimal dead volume especially suited to reverse-flow applications comprises: a) a reactor body; b) a first head engaged with said reactor body; c) a first conduit extending from outside said head to at least partially through said head; and d) a first valve in flow communication with said first conduit controlling fluid flow along a flow path extending from the first valve and through the reactor body. The reactor is especially suited for use in a process for rapid stream-switching of at least two streams in a reverse-flow reactor.
摘要:
In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10−22 bar, an oxygen partial pressure of 10−10 bar, at a temperature of 1200° C. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus. In other aspects, this invention includes a method for pyrolyzing a hydrocarbon feedstock using a pyrolysis reactor system comprising the step of providing in a heated region of a pyrolysis reactor system for pyrolyzing a hydrocarbon feedstock, apparatus comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and that remains in oxide form when exposed to a gas having a carbon partial pressure of 10−22 bar, an oxygen partial pressure of 10−10 bar, at a temperature of 1200° C.
摘要:
In one aspect, the invention includes a heat stable, formed ceramic component that includes a multimodal grain distribution including (i) at least 50 wt % of coarse grains including stabilized zirconia, the coarse grains comprising a D50 grain size in the range of from 5 to 800 μm, based upon the total weight of the component; and (ii) at least 1 wt % of fine grains comprising a D50 average grain size not greater than one-fourth the D50 grain size of the coarse grain, dispersed within the coarse grains, based upon the total weight of the component; wherein after sintering, the component has porosity at ambient temperature in the range of from 5 to 45 vol. %, based on the formed volume of the component. In other embodiments, the invention includes a process for the manufacture of a hydrocarbon pyrolysis product from a hydrocarbon feed using a regenerative pyrolysis reactor system, comprising the steps of: (a) heating a pyrolysis reactor comprising a bi-modal stabilized zirconia ceramic component to a temperature of at least 1500° C. to create a heated reactive region, wherein after exposing the component to a temperature of at least 1500° C. for two hours the component has a bulk porosity measured at ambient temperature in the range of from 5 to 45 vol. %, based on the bulk volume of the component; (b) feeding a hydrocarbon feed to the heated pyrolysis reactor to pyrolyze the hydrocarbon feed and create a pyrolyzed hydrocarbon feed; and (c) quenching the pyrolyzed hydrocarbon feed to produce the hydrocarbon pyrolysis product.
摘要:
A method for treatment of the heavy hydrocarbonaceous fraction resulting from thermal cracking of high molecular-weight hydrocarbonaceous materials, which method comprises removing light hydrocarbons contained in said fraction by bringing it into contact with a bed packed with refractory inorganic particles at an elevated temperature so as to evaporate said light hydrocarbons and regenerating said refractory inorganic particles-packed bed by incinerating heavy hydrocarbonaceous materials remaining on and/or among said particles in the bed by supplying oxygen to the bed.
摘要:
A pyrolysis furnace such as a Wulff furnace having an octagonal baffle in each of the combustion chambers, located so that the longitudinal axis of the baffle is between the fuel inlets of the combustion chamber and the center refractory mass which separates two combustion chambers.
摘要:
THE PRESENT INVENTION COMPRISES, IN A PROCESS FOR THE PYROLYSIS OF NAPHTHA, THE IMPROVEMENT CONSISTING ESSENTIALLY OF FEEDING FROM ABOUT 1.5 TO ABOUT 2.2 POUNDS OF STEAM PER POUND OF NAPHTHA FED TO THE PYROLYSIS FURNACE WHILE FEEDING ABOUT 4.0 TO ABOUT 6.5 POUNDS PER MINUTE OF HYDROCARBONS PER SQUARE FOOT OF CROSS SECTIONAL AREA OF SAID FURNACE.
摘要:
An apparatus and process for producing a combustible oil gas as a supplement to heating gas from a gas generator comprising a bed of curved elongated refractory bodies composed of silicon carbide material having a high thermal conductivity superimposed upon a layer of refractory grid tile capable of withstanding over 3,000* F., the bed being of a thickness of 0.05-0.5 times the diameter of the shell of the gas generator containing the refractory bed, each body having a curved surface with a diameter between 0.5 to 0.08 times the bed thickness and a length approximately 0.2 to 1.0 times the bed thickness, the bed being directly exposed to form the bottom of a combustion chamber within the gas machine so as to absorb thermal shock and to preserve the conventional refractory brick tile from fusing and spalling and restricting the flow of gas through the refractory bed as well as to maintain a rapid heating oil ignition to avoid explosions within the refractory bed.