摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要翻译:公开了一种在高压氧化炉内的高压氧化阶段防止N 2 O变得超临界的方法和装置。 该方法和装置利用催化剂在进入高压氧化炉时催化分解N 2 O 2。 该催化剂在五个大气压和25个大气压N 2 O 2的温度范围和600℃至750℃的温度范围内使用,这是导致N 2 SUB> O超级关键。 通过防止N 2 O 2变得超临界,控制反应以防止温度和压力尖峰。 催化剂可以选自贵金属过渡金属及其氧化物。 该组可以包括钯,铂,铱,铑,镍,银和金。
摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five (5) atmospheres to twenty-five (25) atmospheres N20 and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要翻译:公开了一种在高压氧化炉内的高压氧化阶段防止N 2 O变得超临界的方法和装置。 该方法和装置利用催化剂在进入高压氧化炉时催化分解N 2 O 2。 该催化剂在五个大气压和25个大气压N 2 O 2的温度范围和600℃至750℃的温度范围内使用,这是导致N 2 SUB> O超级关键。 通过防止N 2 O 2变得超临界,控制反应以防止温度和压力尖峰。 催化剂可以选自贵金属过渡金属及其氧化物。 该组可以包括钯,铂,铱,铑,镍,银和金。
摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five (5) atmospheres to twenty-five (25) atmospheres N2O and a temperature range of 600° C. to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要翻译:公开了一种在高压氧化炉内的高压氧化阶段防止N 2 O变得超临界的方法和装置。 该方法和装置利用催化剂在进入高压氧化炉时催化分解N 2 O 2。 该催化剂用于五(5)大气压至二十五(25)个大气压N 2 O的环境和600℃至750℃的温度范围内,这是 导致N< 2> O超越关键的条件。 通过防止N 2 O 2变得超临界,控制反应以防止温度和压力尖峰。 催化剂可以选自贵金属过渡金属及其氧化物。 该组可以包括钯,铂,铱,铑,镍,银和金。
摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmosphere to 25 atmosphere N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要:
a method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five (5) atmospheres to twenty-five (25) atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, rhodium, nickel, silver, and gold.
摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° C. to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要翻译:公开了一种在高压氧化炉内的高压氧化阶段防止N 2 O变得超临界的方法和装置。 该方法和装置利用催化剂在进入高压氧化炉时催化分解N 2 O 2。 该催化剂在五个大气压和25个大气压N 2 O 2的温度范围和600℃至750℃的温度范围内使用,这是导致N 2 SUB> O超级关键。 通过防止N 2 O 2变得超临界,控制反应以防止温度和压力尖峰。 催化剂可以选自贵金属过渡金属及其氧化物。 该组可以包括钯,铂,铱,铑,镍,银和金。
摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace is disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmosphere to 25 atmosphere N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要翻译:公开了一种在高压氧化炉内的高压氧化阶段防止N 2 O变得超临界的方法和装置。 该方法和装置利用催化剂在进入高压氧化炉时催化分解N 2 O 2。 该催化剂用于5个气氛至25个气氛N 2 O 2和600℃至750℃的温度范围的环境中,这是导致N 2 SUB> O超级关键。 通过防止N 2 O 2变得超临界,控制反应以防止温度和压力尖峰。 催化剂可以选自贵金属过渡金属及其氧化物。 该组可以包括钯,铂,铱,铑,镍,银和金。