摘要:
The invention relates to a process for manufacturing an integrated optical device. The method involves forming a silicon dioxide multilayer structure on a silicon substrate containing, in a first region a core layer of a waveguide of the optical device. The core includes an electromagnetic radiation inlet/outlet A trench in a second region of the multilayer structure adjacent said first region is formed by a an anisotropic etching, the trench including side walls and a bottom wall spaced from the Substrate. The method further involves forming a coating layer of the side walls and the bottom wall of the trench; defining an opening in the bottom wall by at least partially removing the coating layer in order to expose the lower silicon dioxide of the multilayer structure; performing an isotropic etch through said opening in order to remove, starting from the exposed silicon dioxide, the multilayer structure silicon dioxide until forming a recess in the multilayer structure having a first wall at least one essentially planar portion inclined relative to the substrate. Such inclined portion extends at least partially in the first region, and includes the inlet/outlet port.
摘要:
The invention relates to a process for manufacturing an integrated optical device. The method involves forming a silicon dioxide multilayer structure on a silicon substrate containing, in a first region a core layer of a waveguide of the optical device. The core includes an electromagnetic radiation inlet/outlet A trench in a second region of the multilayer structure adjacent said first region is formed by a an anisotropic etching, the trench including side walls and a bottom wall spaced from the Substrate. The method further involves forming a coating layer of the side walls and the bottom wall of the trench; defining an opening in the bottom wall by at least partially removing the coating layer in order to expose the lower silicon dioxide of the multilayer structure; performing an isotropic etch through said opening in order to remove, starting from the exposed silicon dioxide, the multilayer structure silicon dioxide until forming a recess in the multilayer structure having a first wall at least one essentially planar portion inclined relative to the substrate. Such inclined portion extends at least partially in the first region, and includes the inlet/outlet port.
摘要:
A process for manufacturing an integrated device includes the steps of: providing a silicon substrate on which a silicon dioxide structure is arranged and forming a trench having first and second essentially vertical walls relative to the substrate in the structure by means of anisotropic-type etching. A concavity having a sloped wall relative to the substrate is formed by isotropic-type etching which removes the second wall so that the concavity is open to the trench and the sloped wall faces the first wall.
摘要:
A packaging structure for optoelectronic components is formed by a first body, of semiconductor material, and a second body, of semiconductor material, fixed to a first face of said first body. A through window is formed in the second body and exposes a portion of the first face of the first body, whereon at least one optoelectronic component is fixed. Through connection regions extend through the first body and are in electrical contact with the optoelectronic component. The through connection regions are insulated from the rest of the first body via through insulation regions. Contact regions are arranged on the bottom face of the first body and are connected to said optoelectronic component via the through connection regions.
摘要:
A process for manufacturing an integrated device includes the steps of: providing a silicon substrate on which a silicon dioxide structure is arranged; and forming a trench having first and second essentially vertical walls relative to the substrate in the structure by means of anisotropic-type etching. A concavity having a sloped wall relative to the substrate is formed by isotropic-type etching which removes the second wall so that the concavity is open to the trench and the sloped wall faces the first wall.
摘要:
A packaging structure for optoelectronic components is formed by a first body, of semiconductor material, and a second body, of semiconductor material, fixed to a first face of said first body. A through window is formed in the second body and exposes a portion of the first face of the first body, whereon at least one optoelectronic component is fixed. Through connection regions extend through the first body and are in electrical contact with the optoelectronic component. The through connection regions are insulated from the rest of the first body via through insulation regions. Contact regions are arranged on the bottom face of the first body and are connected to said optoelectronic component via the through connection regions.
摘要:
A cartridge-like chemical sensor is formed by a housing having a base and a cover fixed to the base and provided with an input opening, an output hole and a channel for a gas to be analyzed. The channel extends in the cover between the input opening and the output hole and faces a printed circuit board carrying an integrated circuit having a sensitive region open toward the channel and of a material capable to bind with target chemicals in the gas to be analyzed. A fan is arranged in the housing, downstream of the integrated device, for sucking the gas after being analyzed, and is part of a thermal control system for the integrated circuit.
摘要:
In an electrostatic micromotor, a mobile substrate faces a fixed substrate and is suspended over the fixed substrate at a given distance of separation in an operative resting condition; an actuation unit is configured so as to give rise to a relative movement of the mobile substrate with respect to the fixed substrate in a direction of movement during an operative condition of actuation. The actuation unit is also configured so as to bring the mobile substrate and the fixed substrate substantially into contact and to keep them in contact during the operative condition of actuation. The electrostatic micromotor is provided with an electronic unit for reducing friction, configured so as to reduce a friction generated by the contact between the rotor substrate and the stator substrate during the relative movement.
摘要:
In an electrostatic micromotor, a mobile substrate faces a fixed substrate and is suspended over the fixed substrate at a given distance of separation in an operative resting condition; an actuation unit is configured so as to give rise to a relative movement of the mobile substrate with respect to the fixed substrate in a direction of movement during an operative condition of actuation. The actuation unit is also configured so as to bring the mobile substrate and the fixed substrate substantially into contact and to keep them in contact during the operative condition of actuation. The electrostatic micromotor is provided with an electronic unit for reducing friction, configured so as to reduce a friction generated by the contact between the rotor substrate and the stator substrate during the relative movement.
摘要:
In an electrostatic micromotor, a mobile substrate faces a fixed substrate, and electrostatic-interaction elements are provided to allow a relative movement of the mobile substrate with respect to the fixed substrate in a direction of movement. The electrostatic-interaction elements include electrodes arranged on a facing surface of the fixed substrate (2) facing the mobile substrate. The mobile substrate has indentations, which extend within the mobile substrate starting from a respective facing surface that faces the fixed substrate and define between them projections staggered with respect to the electrodes in the direction of movement. Side walls of the indentations have a first distance of separation at the respective facing surface, and a second distance of separation, greater than the first distance of separation, at an internal region of the indentations.