Abstract:
An article is disclosed including a manifold, an article wall having at least one external aperture, and a post-impingement cavity disposed between the manifold and the article wall. The manifold includes an impingement plate defining a plenum having a plenum surface, and at least one impingement aperture. The at least one impingement aperture interfaces with the plenum at an intake aperture having a flow modification structure, which, together with the at least one impingement aperture, defines an exhaust aperture. The manifold exhausts a fluid from the plenum into the intake aperture, through the at least one impingement aperture, out the exhaust aperture, into the post-impingement cavity, and through the at least one external aperture.
Abstract:
A gas turbine seal assembly includes a gas turbine component and a gas turbine seal component contacting the gas turbine component to form a seal between the two components. The gas turbine seal component includes ceramic matrix composite plies bonded together to form the ceramic matrix composite component. A bond-inhibiting coating on a non-bonding portion of a first surface of one of the ceramic matrix composite plies prevents bonding between the non-bonding portion of the first surface and a second surface of a neighboring ceramic matrix composite ply. At least one bonding portion of the first surface lacking the bond-inhibiting coating is bonded to the second surface. A method of forming a ceramic matrix composite component includes selectively applying a bond-inhibiting coating to a non-bonding portion of a first surface of a ceramic matrix composite ply and bonding the ceramic matrix composite plies together.
Abstract:
A turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. Radial cooling channels in the trailing edge portion of the airfoil permit radial flow of a cooling fluid through the trailing edge portion. Each radial cooling channel has a first end at a lower surface at a root edge of the trailing edge portion or at an upper surface at a tip edge of the trailing edge portion and a second end opposite the first end at the lower surface or the upper surface. A method of making a turbine component and a method of cooling a turbine component are also disclosed.
Abstract:
An apparatus is disclosed including a first and second article, a first interface volume disposed between and enclosed by the first article and second article, a cooling fluid supply, and at least one cooling fluid channel in fluid communication with the cooling fluid supply and the first interface volume. The first article includes a first material composition. The second article includes a second material composition. The at least one cooling fluid channel includes a heat exchange portion disposed in at least one of the first and second article downstream of the cooling fluid supply and upstream of the first interface volume. A turbine shroud is disclosed wherein the first and second articles are an outer and inner shroud. A turbine nozzle is disclosed wherein the first and second articles are an endwall and fairing.
Abstract:
An article and method of forming an article are provided. The article includes a body portion separating an inner region and an outer region, an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and a conduit extending from an outer surface of the body portion at the aperture and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The method includes providing a body portion separating an inner region and an outer region, providing an aperture in the body portion, and forming a conduit over the aperture, the conduit extending from an outer surface of the body portion and being arranged and disposed to controllably direct fluid from the inner region to the outer region. The article is arranged and disposed for insertion within a hot gas path component.
Abstract:
Apparatuses are disclosed including a first article, a second article, a sewing member and a thermal break. The second article includes a second material composition having a second thermal tolerance greater than a first thermal tolerance of a first material composition of the first article. The sealing member is disposed between and contacts the first article and the second article, and includes a third material composition having a third thermal tolerance less than the second thermal tolerance and less than an operating temperature of the second article. The thermal break is defined by the second article, and is proximate to the sealing member and partitioned from the sealing member by a portion of the second article. The thermal break interrupts a thermal conduction path from the second article to the sealing member. The first article and the second article compress the sealing member, forming a thermal gradient-tolerant seal.
Abstract:
An article and method of forming an article are provided. The article includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, and at least one cooling feature positioned within the inner region. The body portion includes a first material and the at least one cooling feature includes a second material, the second material having a higher thermal conductivity than the first material. The method includes manufacturing a body portion by an additive manufacturing technique and manufacturing at least one cooling feature by the additive manufacturing technique. The body portion includes a first material and the at least one cooling feature includes a second material, the second material having a higher thermal conductivity than the first material.
Abstract:
An article and method of cooling an article are provided. The article includes a body portion, a plurality of partitions within the body portion, and at least one aperture in each of the partitions, the at least one aperture arranged and disposed to direct fluid towards an inner surface of the body portion. The plurality of partitions form at least one up-pass cavity and at least one re-use cavity arranged and disposed to receive the fluid from the at least one aperture in one of the partitions. The method includes providing the article having an up-pass partition and a re-use partition, generating a first fluid flow through the at least one aperture in the up-pass partition, receiving a post-impingement fluid within the re-use cavity, and generating a re-use fluid flow through the at least one aperture in the re-use partition, the re-use fluid flow being generated from the post-impingement fluid.
Abstract:
An article is disclosed including a manifold, an article wall, a post-impingement cavity and a plurality of post-impingement partitions. The manifold includes an impingement wall defining a plenum and a plurality of impingement apertures. The article wall includes a plurality of external apertures. The post-impingement cavity is disposed between the manifold and the article wall, and is arranged to receive a fluid from the plenum through the plurality of impingement apertures and exhaust the fluid through the plurality of external apertures. The plurality of post-impingement partitions divide the post-impingement cavity into a plurality of sub-cavities, and hermetically separate the plurality of sub-cavities from one another. The impingement wall, article wall and plurality of post-impingement partitions are integrally formed as a single, continuous article. The article may be an airfoil component. A method for forming the article includes forming a single, continuous object by an additive manufacturing technique.
Abstract:
A component includes an outer wall that includes an exterior surface, and at least one plenum defined interiorly to the outer wall and configured to receive a cooling fluid therein. The component also includes a coating system disposed on the exterior surface. The coating system has a thickness. The component further includes a plurality of adaptive cooling openings defined in the outer wall. Each of the adaptive cooling openings extends from a first end inflow communication with the at least one plenum, outward through the exterior surface and to a second end covered underneath at least a portion of the thickness of the coating system.