Abstract:
A coal treatment system, comprising an advanced coal treatment stage configured to produce ultra clean coal, wherein the stage comprises a leaching agent treatment system configured to remove a mineral from the coal and form a wastewater stream; and a dewatering system in fluid communication with the leaching agent treatment system and configured to reduce a concentration of a contaminant in the wastewater stream, wherein the dewatering system comprises a reverse osmosis membrane in fluid communication with the wastewater stream.
Abstract:
A method for reducing loads of a wind turbine when a rotor blade of the wind turbine is stuck. The method includes continuously monitoring, via a controller, a loading effect of the stuck rotor blade of the wind turbine. The method also includes providing, via the controller, a predetermined schedule that relates the monitored loading effect of the stuck rotor blade of the wind turbine with a yaw angle for a nacelle of the wind turbine. In addition, the method includes yawing, via the controller, the nacelle of the wind turbine away from an incoming wind direction according to the predetermined schedule.
Abstract:
The present subject matter is directed to a system and method for sequencing Light Detecting and Ranging (LIDAR) sensor beam signals from a LIDAR sensor mounted on a nacelle of a wind turbine with the rotor position of the wind turbine so as to improve signal availability. More specifically, the method includes generating, via the LIDAR sensor, one or more laser signals towards the rotor of the wind turbine, the rotor having one or more rotor blades. The method also includes receiving, via a controller, a rotor position of the rotor of the wind turbine. Thus, the method further includes coordinating, via a control algorithm programmed within the controller, the rotor position with the one or more laser signals of the laser sensor so as to minimize interference between the laser signal(s) and the rotor blades during rotation of the rotor.
Abstract:
A method of separating carbon dioxide (CO2) from nitrogen (N2) and oxygen (O2) within a turbine engine system includes, in an exemplary embodiment, directing an air stream into an air separation unit (ASU), separating N2 from the air stream in the ASU to form an oxygen (O2) rich air stream, and directing the O2 rich air stream to the combustor to mix with a fuel for combustion forming hot combustion gases, containing O2 and CO2, which are used to rotate the turbine. The method also includes directing turbine expander exhaust gases to a heat recovery steam generator (HRSG) to create steam, directing exhaust from the HRSG to a condenser to separate water from a mixture of O2 and CO2 gases, and directing the mixture of O2 and CO2 gases to a separation system where the CO2 is separated from the O2 gases and removed from the separation system.
Abstract:
A method for controlling a wind turbine may generally include operating the wind turbine at an initial power output that is greater than a rated power output associated with the wind turbine. The wind turbine may have an anticipated operational life at the rated power output. In addition, the method may include decreasing a power output of the wind turbine over time in order to maintain an actual operating life of the wind turbine substantially equal to or greater than the anticipated operational life. A final power output of the wind turbine at an end of the anticipated operating life may be less than the rated power output.
Abstract:
The present disclosure is directed to systems and methods for de-icing a rotor blade of a wind turbine. The wind turbine has a nacelle mounted atop a tower. The nacelle has a rotor with a rotatable hub having rotor blade mounted thereto. The method includes shutting down the wind turbine in response to detecting ice on the rotor blade. The method also includes positioning the wind turbine in a de-icing position, the de-icing position including at least one of yawing the nacelle of the wind turbine such that the rotor is in a down-wind location of the tower or pitching the rotor blade such that a leading edge of the rotor blade is facing the tower. Another step includes de-icing the rotor blade while the rotor is in the de-icing position.
Abstract:
A system includes a turbine having an exhaust flow path through a plurality of turbine stages, wherein the plurality of turbine stages is driven by combustion products flowing through the exhaust flow path, at least one main combustor disposed upstream from the turbine, wherein the at least one main combustor is configured to combust a fuel with a first oxidant and an exhaust gas to generate the combustion products, at least one reheat combustor disposed in or between turbine stages of the turbine, wherein the at least one reheat combustor is configured to reheat the combustion products by adding a second oxidant to react with unburnt fuel in the combustion products, and an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route the exhaust gas from the turbine to the at least one main combustor along an exhaust recirculation path.
Abstract:
A method for reducing loads of a wind turbine when a rotor blade of the wind turbine is stuck. The method includes continuously monitoring, via a controller, a loading effect of the stuck rotor blade of the wind turbine. The method also includes providing, via the controller, a predetermined schedule that relates the monitored loading effect of the stuck rotor blade of the wind turbine with a yaw angle for a nacelle of the wind turbine. In addition, the method includes yawing, via the controller, the nacelle of the wind turbine away from an incoming wind direction according to the predetermined schedule.
Abstract:
A system includes a turbine having an exhaust flow path through a plurality of turbine stages, wherein the plurality of turbine stages is driven by combustion products flowing through the exhaust flow path, at least one main combustor disposed upstream from the turbine, wherein the at least one main combustor is configured to combust a fuel with a first oxidant and an exhaust gas to generate the combustion products, at least one reheat combustor disposed in or between turbine stages of the turbine, wherein the at least one reheat combustor is configured to reheat the combustion products by adding a second oxidant to react with unburnt fuel in the combustion products, and an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route the exhaust gas from the turbine to the at least one main combustor along an exhaust recirculation path.
Abstract:
In one aspect, a combustion system is configured to facilitate preventing the formation of vanadium pentoxide (V2O5) and decrease a concentration of at least one of vanadium trioxide (V2O3) and vanadium tetroxide (V2O4) particles in an exhaust. The combustion system includes a vanadium-containing fuel supply and a combustor. The combustor is configured to generate a combustor exhaust gas including vanadium trioxide (V2O3) and/or vanadium tetroxide (V2O4) particles and to combust a reduced-oxygen mixture including the vanadium-containing fuel, ambient air, and a portion of the combustor exhaust gas. The combustion system also includes a particle separator configured to remove substantially all of the V2O3 and/or V2O4 particles from the combustor exhaust gas. A method for combusting fuel and a power generation system are also provided.
Abstract translation:在一个方面,燃烧系统被配置为有助于防止五氧化二钒(V 2 O 5)的形成并且减少排气中的三氧化二钒(V 2 O 3)和四氧化钒(V 2 O 4)颗粒中的至少一种的浓度。 燃烧系统包括含钒燃料供应和燃烧器。 燃烧器被配置为产生包括三氧化二钒(V 2 O 3)和/或四氧化钒(V 2 O 4)颗粒的燃烧器废气,并且燃烧包含含钒燃料,环境空气和燃烧器排气的一部分的还原氧混合物 加油站。 该燃烧系统还包括一个颗粒分离器,其构造成从燃烧器废气中基本上除去所有的V 2 O 3和/或V 2 O 4颗粒。 还提供了燃烧燃料和发电系统的方法。