Abstract:
Various embodiments include approaches for analyzing integrated circuit (IC) designs. In some cases, an approach includes: defining extraction parameters for the design of the IC for each of a set of failure modes; testing the design of the IC for a failure mode in the set of failure modes; identifying a defined extraction parameter from the design of the IC for at least one of the set of failure modes; correlating the identified defined extracted parameter and each of the at least one failure mode for the design of the IC; and creating a normalized parameter equation representing the correlation of the identified defined extraction parameter with the at least one failure mode for the design of the IC in numerical form.
Abstract:
Various embodiments include approaches for analyzing integrated circuit (IC) designs. In some cases, an approach includes: defining extraction parameters for the design of the IC for each of a set of failure modes; testing the design of the IC for a failure mode in the set of failure modes; identifying a defined extraction parameter from the design of the IC for at least one of the set of failure modes; correlating the identified defined extracted parameter and each of the at least one failure mode for the design of the IC; and creating a normalized parameter equation representing the correlation of the identified defined extraction parameter with the at least one failure mode for the design of the IC in numerical form.
Abstract:
Apparatus, method and computer program product for reducing overlay errors during a semiconductor photolithographic mask design process flow. The method obtains data representing density characteristics of a photo mask layout design; predicts stress induced displacements based on said obtained density characteristics data; and corrects the mask layout design data by specifying shift movement of individual photo mask design shapes to pre-compensate for predicted displacements. To obtain data representing density characteristics, the method merges pieces of data that are combined to make a photo mask to obtain a full reticle field data set. The merge includes a merge of data representing density characteristic driven stress effects. The density characteristics data for the merged reticle data are then computed. To predict stress-induced displacements, the method inputs said density characteristics data into a programmed model that predicts displacements as a function of density, and outputs the predicted shift data.
Abstract:
A stack pad layers including a first pad oxide layer, a pad nitride layer, and a second pad oxide layer are formed on a semiconductor-on-insulator (SOI) substrate. A deep trench extending below a top surface or a bottom surface of a buried insulator layer of the SOI substrate and enclosing at least one top semiconductor region is formed by lithographic methods and etching. A stress-generating insulator material is deposited in the deep trench and recessed below a top surface of the SOI substrate to form a stress-generating buried insulator plug in the deep trench. A silicon oxide material is deposited in the deep trench, planarized, and recessed. The stack of pad layer is removed to expose substantially coplanar top surfaces of the top semiconductor layer and of silicon oxide plugs. The stress-generating buried insulator plug encloses, and generates a stress to, the at least one top semiconductor region.