Abstract:
A device including a plurality of static random-access memory (SRAM) bitcells arranged in rows and columns, wherein the SRAM bitcells comprise fully depleted silicon-on-insulator field effect transistors (FDSOI-FETs). The FDSOI-FETs comprise P-channel-pull-up-transistors, wherein each P-channel-pull-up-transistor comprises a back gate. The device further includes a plurality of bitlines, wherein each bitline is electrically connected to the SRAM bitcells of one of the columns and a plurality of wordlines, wherein each wordline is electrically connected to the SRAM bitcells of one of the rows. The device further includes a bitline control circuit configured to select at least one column for writing, wherein during a write operation a first control signal is applied to the back gates of the P-channel-pull-up-transistors of the at least one column selected for writing and a second control signal to the back gates of the P-channel-pull-up-transistors of the columns not selected for writing.
Abstract:
Methods and a computer program product are described for placing, by an electronic design tool, a first alignment key shape of a first cell and a second alignment key shape of a second cell positioned on a common edge where the first cell abuts the second cell in a physical layout design. An abutting alignment key shape is formed by placement of the first alignment key shape and the second alignment key shape in the physical layout design. The abutting alignment key shape is checked by a design rule to identify a disallowed cell placement of the first cell relative to the second cell when the abutting alignment key shape does not form a pre-defined shape of a correct size. The disallowed cell placement is corrected, by a designer, through substitution of an allowed cell placement to provide a corrected physical layout design for manufacture of the IC.
Abstract:
A device including a plurality of static random-access memory (SRAM) bitcells arranged in rows and columns, wherein the SRAM bitcells comprise fully depleted silicon-on-insulator field effect transistors (FDSOI-FETs). The FDSOI-FETs comprise P-channel-pull-up-transistors, wherein each P-channel-pull-up-transistor comprises a back gate. The device further includes a plurality of bitlines, wherein each bitline is electrically connected to the SRAM bitcells of one of the columns and a plurality of wordlines, wherein each wordline is electrically connected to the SRAM bitcells of one of the rows. The device further includes a bitline control circuit configured to select at least one column for writing, wherein during a write operation a first control signal is applied to the back gates of the P-channel-pull-up-transistors of the at least one column selected for writing and a second control signal to the back gates of the P-channel-pull-up-transistors of the columns not selected for writing.
Abstract:
Methods and a computer program product are described for placing, by an electronic design tool, a first alignment key shape of a first cell and a second alignment key shape of a second cell positioned on a common edge where the first cell abuts the second cell in a physical layout design. An abutting alignment key shape is formed by placement of the first alignment key shape and the second alignment key shape in the physical layout design. The abutting alignment key shape is checked by a design rule to identify a disallowed cell placement of the first cell relative to the second cell when the abutting alignment key shape does not form a pre-defined shape of a correct size. The disallowed cell placement is corrected, by a designer, through substitution of an allowed cell placement to provide a corrected physical layout design for manufacture of the IC.
Abstract:
The present disclosure provides a storage cell or storage structure having a static RAM-like operational behavior while nevertheless providing non-volatile storage capability on a single bit basis. To this end, a non-volatile storage element, such as a ferroelectric transistor element, may be provided within an inverter structure so as to allow the storage of a logic state at any desired operational phase by increasing the voltage difference used for operating the inverter structure. In illustrative embodiments, the stored logic state may be re-established during a power-up event.
Abstract:
Disclosed is an illustrative bit cell that includes a first inverter circuit that includes a first input node and a first output node and a second inverter circuit that includes a second input node and a second output node, wherein the first output node is coupled to the second input node and the second output node is coupled to the first input node. The bit cell also includes a first extension field effect transistor that includes a first gate structure, a first cell-internal S/D region and a first cell boundary node S/D region, wherein first cell-internal S/D region electrically terminates within the cell boundary. The first gate structure is electrically coupled to one of the first or second input nodes and it is also shorted to the first cell-internal S/D region.