Abstract:
A method for fabricating a finfet with a buried local interconnect and the resulting device are disclosed. Embodiments include forming a silicon fin on a BOX layer, forming a gate electrode perpendicular to the silicon fin over a portion of the silicon fin, forming a spacer on each of opposite sides of the gate electrode, forming source/drain regions on the silicon fin at opposite sides of the gate electrode, recessing the BOX layer, undercutting the silicon fin and source/drain regions, at opposite sides of the gate electrode, and forming a local interconnect on a recessed portion of the BOX layer.
Abstract:
One illustrative transistor device disclosed herein includes a gate structure positioned above at least an active region, wherein the gate structure has an axial length in a direction corresponding to a gate width direction of the transistor device. In this example, a first portion of the axial length of the gate structure has a first upper surface and a second portion of the axial length of the gate structure has a second upper surface, wherein the first upper surface is positioned at a level that is above a level of the second upper surface. The device also includes a gate contact structure that contacts the first upper surface of the gate structure.
Abstract:
At least one method, apparatus and system disclosed herein involves forming trench in a gate region, wherein the trench having an oxide layer to a height to reduce or prevent process residue. A plurality of fins are formed on a semiconductor substrate. Over a first portion of the fins, an epitaxial (EPI) feature at a top portion of each fin of the first portion. Over a second portion of the fins, a gate region is formed. In a portion of the gate region, a trench is formed. A first oxide layer at a bottom region of the trench is formed. Prior to performing an amorphous-silicon (a-Si) deposition, a flowable oxide material is deposited into the trench for forming a second oxide layer. The second oxide layer comprises the flowable oxide and the first oxide layer. The second oxide layer has a first height.
Abstract:
At least one method, apparatus and system disclosed herein involves forming trench in a gate region, wherein the trench having an oxide layer to a height to reduce or prevent process residue. A plurality of fins are formed on a semiconductor substrate. Over a first portion of the fins, an epitaxial (EPI) feature at a top portion of each fin of the first portion. Over a second portion of the fins, a gate region is formed. In a portion of the gate region, a trench is formed. A first oxide layer at a bottom region of the trench is formed. Prior to performing an amorphous-silicon (a-Si) deposition, a flowable oxide material is deposited into the trench for forming a second oxide layer. The second oxide layer comprises the flowable oxide and the first oxide layer. The second oxide layer has a first height.
Abstract:
At least one method, apparatus and system disclosed herein involves forming trench in a gate region, wherein the trench having an oxide layer to a height to reduce or prevent process residue. A plurality of fins are formed on a semiconductor substrate. Over a first portion of the fins, an epitaxial (EPI) feature at a top portion of each fin of the first portion. Over a second portion of the fins, a gate region is formed. In a portion of the gate region, a trench is formed. A first oxide layer at a bottom region of the trench is formed. Prior to performing an amorphous-silicon (a-Si) deposition, a flowable oxide material is deposited into the trench for forming a second oxide layer. The second oxide layer comprises the flowable oxide and the first oxide layer. The second oxide layer has a first height.
Abstract:
At least one method, apparatus and system disclosed herein involves forming trench in a gate region, wherein the trench having an oxide layer to a height to reduce or prevent process residue. A plurality of fins are formed on a semiconductor substrate. Over a first portion of the fins, an epitaxial (EPI) feature at a top portion of each fin of the first portion. Over a second portion of the fins, a gate region is formed. In a portion of the gate region, a trench is formed. A first oxide layer at a bottom region of the trench is formed. Prior to performing an amorphous-silicon (a-Si) deposition, a flowable oxide material is deposited into the trench for forming a second oxide layer. The second oxide layer comprises the flowable oxide and the first oxide layer. The second oxide layer has a first height.
Abstract:
One illustrative method disclosed includes, among other things, forming at least one layer of sacrificial material above an underlying conductive structure, forming a sacrificial contact structure in the at least one layer of sacrificial material and forming at least one layer of insulating material around the sacrificial contact structure. In this example, the method also includes performing at least one process operation to expose an upper surface of the sacrificial contact structure, removing the sacrificial contact structure so as to form a contact opening that exposes the upper surface of the underlying conductive structure and forming a final contact structure in the contact opening, the final contact structure conductively contacting the underlying conductive structure.