Abstract:
Methods and system are provided for controlling a vehicle. The methods and systems read sensors and estimate pneumatic trail for a tire of the vehicle based on the sensor readings. The methods and systems determine presence or absence of a tire lateral saturation condition based on a comparison of the estimated pneumatic trail for the tire of the vehicle with a pneumatic trail threshold indicative of a tire lateral saturation condition. When the tire lateral saturation condition is present, the methods and systems determine a control value and use the control value as an input to a vehicle control module. The vehicle control module is responsive to the tire lateral saturation condition based on the control value.
Abstract:
A device includes a plurality of tires and a suspension system as subcomponents. The suspension system includes at least one suspension sensor configured to provide suspension data (S). A controller is operatively connected to the suspension sensor. The controller has a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for determining respective tire normal forces (Fzi(t), i=1 . . . 4) for one or more of the plurality of tires, based at least partially on the suspension data (S). The tire normal force (Fz) is the net force acting on each tire (or wheel) in the vertical direction. The tire normal force acting on each tire may be determined without using the specific model of the tire, road information, wheel or tire sensors.
Abstract:
A method for providing vehicle lateral steering control. The method includes providing a mathematical model of vehicle dynamics that includes a state variable, a steering control variable and a future road disturbance factor that defines the upcoming road curvature, banks and slopes of the roadway. The method determines an optimal steering control signal that includes a feedback portion and a feed-forward portion, where the feed-forward portion includes the road disturbance factor. The method determines a state variable and a control variable for the current roadway curvature, bank and slope for stationary motion of the vehicle for constant speed, yaw rate and lateral velocity. The method then introduces a new state variable and control variable for dynamic vehicle motion for variable speed, yaw rate and lateral velocity that is a difference between the state and control variables for predicted future times and the steady state variables.
Abstract:
A method of providing automatic collision avoidance in a vehicle with a front wheel electric power steering (EPS) system and rear wheel active rear steering (ARS) system and an automatic collision avoidance system are described. The method includes generating a vehicle math model including the control variables, designing a steering control goal as a criterion to determine the control variables, and implementing a model predictive control to solve the steering control goal and determine the control variables. The method also includes providing the control variables to the EPS system and the ARS system to respectively control a front actuator associated with front wheels and a rear actuator associated with rear wheels.
Abstract:
A motor vehicle motion control health monitoring system includes sensors and actuators disposed on the motor vehicle. The sensors measure real-time static and dynamic telemetry data about the motor vehicle, and the actuators alter static and dynamic behavior of the motor vehicle. A control module has a processor, a memory, and input/output (I/O) ports. The processor executes program code portions stored in the memory, the program code portions include: an offline portion that collects telemetry data from the motor vehicle, performs failure analysis on the telemetry data and allocates tasks based on the failure analysis; and an online portion that analyzes the telemetry data for failures within specific sensors, actuators, or functions that utilize systems of sensors and/or actuators. The online portion mitigates deviations in the telemetry data by sending a correction to the one or more sensors, actuators, and/or functions of a motor vehicle motion control system.
Abstract:
A method and system for controlling a vehicle to improve vehicle dynamics are provided. The method includes receiving data from a plurality of sensors which monitor vehicle dynamics by monitoring at least wheel and steering movements associated with a vehicle system used in controlling vehicle dynamics by control outputs from a holistic vehicle control system. Then, estimating states of the vehicle from computations of longitudinal and latitudinal velocities, tire slip ratios, clutch torque, axle torque, brake torque, and slip angles derived from the data sensed by the sensors from the wheel and steering movements. Finally, formulating a model of vehicle dynamics by using estimations of vehicle states with a target function to provide analytical data to enable the model of vehicle dynamics to be optimized and for using the data associated with the model which has been optimized to change control outputs to improve in real-time the vehicle dynamics.
Abstract:
A device includes a body operatively connected to a plurality of wheels, with the plurality of wheels being positioned relative to a banked surface defining a bank angle (β). A suspension system includes at least one suspension sensor configured to provide suspension displacement data. A controller is in communication with the at least one suspension sensor and has a processor and tangible, non-transitory memory on which is recorded instructions. The controller is configured to obtain the suspension displacement data and determine a roll angle (φ) based at least partially on the suspension displacement data. The bank angle (β) is determined based at least partially on the roll angle (φ), a yaw rate (r), a longitudinal velocity (Vx) and a plurality of predetermined parameters. Operation of the device is controlled based partly on at least one of the roll angle (φ) and the bank angle (β).
Abstract:
A device includes a plurality of tires, a suspension system operatively connected to the plurality of tires, at least one suspension sensor operatively connected to the suspension system and configured to provide suspension data (S), and a controller operatively connected to the at least one suspension sensor and having a processor for executing a method for determining respective tire normal forces (Fzi(t), i=1 . . . n) for one or more of the plurality of tires, based at least partially on the suspension data (S), the respective tire normal forces being operative to adjust operation of the wheeled device. Execution of the instructions by the processor causes the controller to determine a transformation matrix (Ts) based on a plurality of predefined parameters. The controller is configured to obtain the respective tire normal forces (Fzi(t), i==1 . . . n) via the following equation: {tilde over (F)}z=[TS+τS(p)]{tilde over (S)}+Tuũ.
Abstract:
A method of reconstructing a detected faulty signal. A roll sensor fault is detected by a processor. A signal of the detected faulty roll sensor is reconstructed using indirect sensor data. The reconstructed signal is output to a controller to maintain stability.
Abstract:
A method of providing automatic collision avoidance in a vehicle with a front wheel electric power steering (EPS) system and rear wheel active rear steering (ARS) system and an automatic collision avoidance system are described. The method includes generating a vehicle math model including the control variables, designing a steering control goal as a criterion to determine the control variables, and implementing a model predictive control to solve the steering control goal and determine the control variables. The method also includes providing the control variables to the EPS system and the ARS system to respectively control a front actuator associated with front wheels and a rear actuator associated with rear wheels.