Abstract:
An apparatus and a method for controlling operation of a vehicle includes a controller having a processor and a tangible, non-transitory memory. The vehicle includes a park assembly with a park actuator motor having an actuator shaft. The vehicle has a park mode and an out-of-park mode. The controller is configured to determine if the park actuator motor has reached an out-of-park position when a shift command to the out-of-park mode is received. The controller is configured to obtain and store at least one dynamic parameter associated with the park actuator motor prior to the detent member reaching the out-of-park position. The method includes determining a load factor based on the dynamic parameter over time when at least one of a predefined time threshold and a predefined motor position threshold is reached. Operation of the vehicle is controlled based at least partially on the load factor.
Abstract:
A fluid circuit includes a device, a cooler, and a valve. The valve includes a housing, a sealing member, a biasing device, and an actuator. The sealing member moves inside the housing between a first position and a second position. The actuator includes a smart material that is activated when the temperature of a fluid inside the housing exhibiting at least a first temperature, causing the sealing member to move to the second position. The smart material is deactivated when the fluid is a sufficient number of degrees less than the first temperature, causing the sealing member to move to the first position. The fluid flows from the housing to the device and then to the housing when the sealing member is in the first position. The fluid flows from the housing to the cooler and then to the device when the sealing member is in the second position.
Abstract:
A hydraulic control system for a transmission is provided. The hydraulic control system includes a source of pressurized hydraulic fluid that communicates with an electronic transmission range selection (ETRS) subsystem. In one example, the ETRS subsystem includes an ETRS enablement valve, an ETRS control valve, a park servo that controls a park mechanism, a plurality of solenoids, and a park inhibit solenoid assembly.
Abstract:
A speed ratio containment process limits the speed ratio of a variator for a CVT for a motor vehicle when rolling backward by commanding a speed ratio that is higher than the actual speed ratio in an overdrive direction. Accordingly, the actual speed ratio moves to a lowest limit, which provides maximum torque when a driver of the motor vehicle steps on the accelerator pedal to resume forward motion of the motor vehicle.
Abstract:
A system for absorbing vibration in a rotary member having a predetermined rotary speed of the present invention has a selectively moveable mass and a positioning mechanism. The mass is in communication with the rotary member having a predetermined position. The positioning mechanism exerts a force on the mass at least when the rotary member operates below the predetermined rotary speed. The force exerted by the positioning mechanism orients the mass at the predetermined position when the rotary member operates below the predetermined rotary speed.
Abstract:
An apparatus and a method for controlling operation of a vehicle includes a controller having a processor and a tangible, non-transitory memory. The vehicle includes a park assembly with a park actuator motor having an actuator shaft. The vehicle has a park mode and an out-of-park mode. The controller is configured to determine if the park actuator motor has reached an out-of-park position when a shift command to the out-of-park mode is received. The controller is configured to obtain and store at least one dynamic parameter associated with the park actuator motor prior to the detent member reaching the out-of-park position. The method includes determining a load factor based on the dynamic parameter over time when at least one of a predefined time threshold and a predefined motor position threshold is reached. Operation of the vehicle is controlled based at least partially on the load factor.
Abstract:
A method of controlling a vehicle park system in a shift out of park includes receiving a shift out of park request, and commanding a park actuator to rotate an actuator shaft operatively connected to a park pawl movable from an engaged position in which the park pawl is engaged with a park gear, to a disengaged position in which the park pawl is disengaged from the park gear. The method includes determining whether a detent lever operatively connected to the park pawl has moved towards an out of park position within a predetermined period of time after commanding the park actuator to rotate the actuator shaft, and then commanding an electric propulsion motor to apply torque to the transmission output shaft to assist the park actuator if the detent lever has not moved towards the out of park position within the predetermined period of time.
Abstract:
A method of controlling a vehicle park system in a shift out of park includes receiving a shift out of park request, and commanding a park actuator to rotate an actuator shaft operatively connected to a park pawl movable from an engaged position in which the park pawl is engaged with a park gear, to a disengaged position in which the park pawl is disengaged from the park gear. The method includes determining whether a detent lever operatively connected to the park pawl has moved towards an out of park position within a predetermined period of time after commanding the park actuator to rotate the actuator shaft, and then commanding an electric propulsion motor to apply torque to the transmission output shaft to assist the park actuator if the detent lever has not moved towards the out of park position within the predetermined period of time.
Abstract:
A method for retracting an extended pin of a sliding camshaft actuator wherein the actuator includes a magnetic field generating coil, a magnetic piston in connection with the extended pin operable to be actuated by the magnetic field generating coil, and a pin stop plate. The method comprises creating an air gap between the magnetic piston and the pin stop plate and reversing voltage on the magnetic field generating coil to retract the extended pin.
Abstract:
A transmission is provided having an input member, an output member, four planetary gear sets, a four coupling members and a six torque-transmitting mechanisms. Further, a hydraulic fluid control circuit is provided for controlling the operation of the plurality of torque-transmitting devices. The hydraulic fluid control circuit receives pressurized hydraulic fluid from an off-axis hydraulic fluid pump and has a plurality of fluid passages disposed in the transmission house, input member and other coupling members.