Abstract:
A fault tolerant design for large area nitride semiconductor devices is provided, which facilitates testing and isolation of defective areas. A transistor comprises an array of a plurality of islands, each island comprising an active region, source and drain electrodes, and a gate electrode. Electrodes of each island are electrically isolated from electrodes of neighboring islands in at least one direction of the array. Source, drain and gate contact pads are provided to enable electrical testing of each island. After electrical testing of islands to identify defective islands, overlying electrical connections are formed to interconnect source electrodes in parallel, drain electrodes in parallel, and to interconnect gate electrodes to form a common gate electrode of large gate width Wg. Interconnections are provided selectively to good islands, while electrically isolating defective islands. This approach makes it economically feasible to fabricate large area GaN devices, including hybrid devices.
Abstract:
A GaN-on-Si device structure and a method of fabrication are disclosed for improved die yield and device reliability of high current/high voltage lateral GaN transistors. A plurality of conventional GaN device structures comprising GaN epi-layers are fabricated on a silicon substrate (GaN-on-Si die). After processing of on-chip interconnect layers, a trench structure is defined around each die, through the GaN epi-layers and into the silicon substrate. A trench cladding is provided on proximal sidewalls, comprising at least one of a passivation layer and a conductive metal layer. The trench cladding extends over exposed surfaces of the GaN epi-layers, over the interface region with the substrate, and over the exposed surfaces of the interconnect layers. This structure reduces risk of propagation of dicing damage and defects or cracks in the GaN epi-layers into active device regions. A metal trench cladding acts as a barrier for electro-migration of mobile ions.
Abstract:
A GaN-on-Si device structure and a method of fabrication are disclosed for improved die yield and device reliability of high current/high voltage lateral GaN transistors. A plurality of conventional GaN device structures comprising GaN epi-layers are fabricated on a silicon substrate (GaN-on-Si die). After processing of on-chip interconnect layers, a trench structure is defined around each die, through the GaN epi-layers and into the silicon substrate. A trench cladding is provided on proximal sidewalls, comprising at least one of a passivation layer and a conductive metal layer. The trench cladding extends over exposed surfaces of the GaN epi-layers, over the interface region with the substrate, and also over the exposed surfaces of the interconnect layers. This structure reduces risk of propagation of dicing damage and defects or cracks in the GaN epi-layers into active device regions. A metal trench cladding acts as a barrier for electro-migration of mobile ions.
Abstract:
A fault tolerant design for large area nitride semiconductor devices is provided, which facilitates testing and isolation of defective areas. A transistor comprises an array of a plurality of islands, each island comprising an active region, source and drain electrodes, and a gate electrode. Electrodes of each island are electrically isolated from electrodes of neighbouring islands in at least one direction of the array. Source, drain and gate contact pads are provided to enable electrical testing of each island. After electrical testing of islands to identify defective islands, overlying electrical connections are formed to interconnect source electrodes in parallel, drain electrodes in parallel, and to interconnect gate electrodes to form a common gate electrode of large gate width Wg. Interconnections are provided selectively to good islands, while electrically isolating defective islands. This approach makes it economically feasible to fabricate large area GaN devices, including hybrid devices.