Intensity noise mitigation for vertical-cavity surface emitting lasers

    公开(公告)号:US10985531B2

    公开(公告)日:2021-04-20

    申请号:US16258616

    申请日:2019-01-27

    Abstract: A VCSEL device includes a substrate and a first DBR structure disposed on the substrate. The VCSEL device further includes a cathode contact disposed on a top surface of the first DBR structure. In addition, the VCSEL device includes a VCSEL mesa that is disposed on the top surface of the first DBR structure. The VCSEL mesa includes a quantum well, a non-circularly-shaped oxide aperture region disposed above the quantum well, and a second DBR structure disposed above the non-circularly-shaped oxide aperture region. In addition, the VCSEL mesa includes a selective polarization structure disposed above the second DBR structure and an anode contact disposed above the selective polarization structure.

    BONDED FILTER SUBSTRATES
    3.
    发明申请

    公开(公告)号:US20200057212A1

    公开(公告)日:2020-02-20

    申请号:US16665995

    申请日:2019-10-28

    Abstract: In the examples provided herein, an apparatus has a first substrate upon which one or more first filters have been fabricated on a first surface of the first substrate. The apparatus also has a second substrate upon which one or more second filters have been fabricated on a second surface of the second substrate, wherein the one or more first filters and the one or more second filters each transmit a different band of wavelengths. Additionally, the apparatus has a bonding material that bonds the first substrate to the second substrate.

    Bottom emitting vertical-cavity surface-emitting lasers

    公开(公告)号:US10290996B1

    公开(公告)日:2019-05-14

    申请号:US15962649

    申请日:2018-04-25

    Abstract: A bottom-emitting vertical-cavity surface-emitting laser (VCSEL) structure includes a first substrate permitting the passage of light therethrough, an n-doped distributed Bragg reflector (nDBR), a p-doped distributed Bragg reflector (pDBR), one or more active layers, at least one of a high contrast grating mirror and a dielectric-enhanced metal mirror, and a plurality of layers, where the VCSEL structure is configured to be flip chipped to a second substrate. The pDBR and the nDBR define a laser cavity extending vertically therebetween and containing the one or more active layers. The at least one of a high contrast grating mirror and a dielectric-enhanced metal mirror may be disposed over the pDBR. The plurality of layers may be disposed over the at least one of the high contrast grating mirror and the dielectric-enhanced metal mirror to optically and hermetically seal the laser cavity.

    Rigid-plane optical jumper for pluggable optical transceivers

    公开(公告)号:US11415763B2

    公开(公告)日:2022-08-16

    申请号:US16988428

    申请日:2020-08-07

    Abstract: Pluggable optical transceiver modules are described herein that are specifically configured to preclude use of fiber jumpers inside of the module. Pluggable optical transceiver modules implement a rigid-plane jumper that provides an opto-mechanical interface between an external fiber cable (attached to the pluggable optical transceiver module) and the optical transceiver in a manner that does not require the fiber jumper, while ensuring reduced optical loss. In some embodiments one or more rigid waveguide plates act as an opto-mechanical coupling between the external fiber cable and on-board opto-electrical components (e.g., optical transceiver). For example, the rigid waveguide plates are coupled to a faceplate connector, and a CWDM block that is in turn optically coupled to the optical socket. In some embodiments, the CWDM block is directly attached to the rigid waveguide plates. In some embodiments, the CWDM block is indirectly attached to the rigid waveguide plates using a half periscope.

    Optical apparatus for optical transceivers

    公开(公告)号:US10897122B2

    公开(公告)日:2021-01-19

    申请号:US15958029

    申请日:2018-04-20

    Abstract: An optical apparatus is provided for an optical transceiver. The optical apparatus includes an interposer, a glass lens chip bonded to the interposer, and a plurality of bottom-emitting vertical-cavity surface-emitting lasers (VCSELs) flip chipped to the interposer. Each of the bottom-emitting VCSELs is fabricated on a respective substrate, at least one bottom-emitting VCSEL is capable of emitting an optical signal having a wavelength of about 850 nm, and at least a portion of the respective substrate on which the at least one bottom-emitting VCSEL is fabricated is removed to permit the at least one bottom-emitting VCSEL to emit the optical signal having the wavelength of about 850 nm to the glass lens chip.

    INTENSITY NOISE MITIGATION FOR VERTICAL-CAVITY SURFACE EMITTING LASERS

    公开(公告)号:US20200244040A1

    公开(公告)日:2020-07-30

    申请号:US16258616

    申请日:2019-01-27

    Abstract: A VCSEL device includes a substrate and a first DBR structure disposed on the substrate. The VCSEL device further includes a cathode contact disposed on a top surface of the first DBR structure. In addition, the VCSEL device includes a VCSEL mesa that is disposed on the top surface of the first DBR structure. The VCSEL mesa includes a quantum well, a non-circularly-shaped oxide aperture region disposed above the quantum well, and a second DBR structure disposed above the non-circularly-shaped oxide aperture region. In addition, the VCSEL mesa includes a selective polarization structure disposed above the second DBR structure and an anode contact disposed above the selective polarization structure.

Patent Agency Ranking