Abstract:
According to an example, in a method for enhancing temperature distribution uniformity across a printer die, in which the printer die includes a plurality of drop generators arranged in a plurality of columns, a warming map that identifies the drop generators of the plurality of drop generators that are to be supplied with warming pulses to enhance temperature distribution uniformity across the printer die may be accessed. The warming map may identify a non-uniform distribution of the drop generators across a column of the plurality of columns. In addition, the warming map may be implemented to supply the drop generators identified in the warming map as the drop generators that are to receive the warming pulses.
Abstract:
A method of custom print mode generation in a three-dimensional (3D) printing device may include printing a plurality of parts with a plurality of 3D printing devices, the parts each being printed using different process parameters, and capturing a plurality of images of the parts. The method may also include, with an image analysis module, analyzing the images to classify the parts into a plurality of defect gradings, and adjusting a number of the process parameters based on characteristics of the parts identified by a user as undesirable. The examiner may also include, with a recommending module, creating a custom print mode based on the parts defect gradings and adjusted process parameters.
Abstract:
A fluid dispenser may include an array of fluid delivery assemblies. Each fluid delivery assembly may include orifices through which fluid is to be ejected and slots. Each slot extends to a respective one of the orifices. The slots have different geometric shapes.
Abstract:
A fluid dispenser may include an array of fluid delivery assemblies, Each fluid delivery assembly may include orifices through which fluid is to be ejected and slots. Each slot extends to a respective one of the orifices. The slots have different geometric shapes.
Abstract:
A fluid dispenser is disclosed herein. An example of such a fluid dispenser includes a member configured to define a plurality of orifices through which a fluid is ejected and a manifold including a plurality of fluid passageways each of which is configured to have a different angle relative to the member. This example of a fluid dispenser additionally includes a plurality of slots each of which is coupled to a different one of the fluid passageways of the manifold to conduct the fluid from the fluid passageways towards the orifices. Additional features and modifications of this fluid dispenser are disclosed herein, as are other examples of fluid dispensers.
Abstract:
A method of custom print mode generation in a three-dimensional (3D) printing device may include printing a plurality of parts with a plurality of 3D printing devices, the parts each being printed using different process parameters, and capturing a plurality of images of the parts. The method may also include, with an image analysis module, analyzing the images to classify the parts into a plurality of defect gradings, and adjusting a number of the process parameters based on characteristics of the parts identified by a user as undesirable. The examiner may also include, with a recommending module, creating a custom print mode based on the parts defect gradings and adjusted process parameters.
Abstract:
A method of forming a substrate for a fluid ejection device includes forming an opening in the substrate from a second side toward a first side, and further forming the opening in the substrate to the first side, including increasing the opening to the first side and increasing the opening at the second side, and forming the opening with substantially parallel sidewalls intermediate the first side and the second side and converging sidewalls to the first side.
Abstract:
According to an example, in a method for enhancing temperature distribution uniformity across a printer die, in which the printer die includes a plurality of drop generators arranged in a plurality of columns, a warming map that identifies the drop generators of the plurality of drop generators that are to be supplied with warming pulses to enhance temperature distribution uniformity across the printer die may be accessed. The warming map may identify a non-uniform distribution of the drop generators across a column of the plurality of columns. In addition, the warming map may be implemented to supply the drop generators identified in the warming map as the drop generators that are to receive the warming pulses.
Abstract:
A method of forming a substrate for a fluid ejection device includes forming an opening in the substrate from a second side toward a first side, and further forming the opening in the substrate to the first side, including increasing the opening to the first side and increasing the opening at the second side, and forming the opening with substantially parallel sidewalls intermediate the first side and the second side and converging sidewalls to the first side.
Abstract:
A method of forming a substrate for a fluid ejection device includes forming an opening in the substrate from a second side toward a first side, and further forming the opening in the substrate to the first side, including increasing the opening to the first side and increasing the opening at the second side, and forming the opening with substantially parallel sidewalls intermediate the first side and the second side and converging sidewalls to the first side.