Abstract:
A system and method display general terrain clearance awareness, whether the aircraft is off route, on airway, off procedure, or on procedure, so altitude thresholds are not violated and EGPWS alerts are avoided, while reducing clutter in displaying the information. Altitude, location, and rate of change in altitude are considered in determining whether the aircraft will exceed the threshold altitude. A flight path or an area to be entered is highlighted when the threshold altitude will be violated by the aircraft with the current flight path. The threshold altitude may be a minimum or maximum allowed altitude, or the terrain.
Abstract:
A system and method for operating a dynamic vertical situation display on an aircraft includes generating display data for a dynamic vertical situation display displayed on a display based upon flight plan data from a flight management system, where the flight plan data includes a plurality of waypoints and one or more phases of flight. A current phase of flight of the aircraft and a number of waypoints currenting displayed on the dynamic vertical situation display on the display is determined, and instructions to dynamically change a size of the dynamic vertical situation display on the display are generated based upon at least one of the number of waypoints currenting displayed on the display and the current phase of flight of the aircraft.
Abstract:
Systems and methods are provided for displaying portions of a route on a coverage map that are non-compliant for a Global Navigation Satellite System (GNSS) navigation system in an aircraft. A route compliance module defines a geodetic reference datum standard based on the GNSS navigation system. A navigation system database has compliance information corresponding to each of a plurality of airports. A flight management system determines the route of the aircraft and a visual display displays the route and the coverage map. The route compliance module identifies a non-compliant region of the coverage map that is not compliant with the geodetic reference datum standard based on the compliance information and adjusts the visual display to differentiate a non-compliant portion of the route extending within the non-compliant region of the coverage map.
Abstract:
A system and method for operating a dynamic vertical situation display on an aircraft includes generating display data for a dynamic vertical situation display displayed on a display based upon flight plan data from a flight management system, where the flight plan data includes a plurality of waypoints and one or more phases of flight. A current phase of flight of the aircraft and a number of waypoints currenting displayed on the dynamic vertical situation display on the display is determined, and instructions to dynamically change a size of the dynamic vertical situation display on the display are generated based upon at least one of the number of waypoints currenting displayed on the display and the current phase of flight of the aircraft.
Abstract:
A flight display system or method in accordance with this disclosure involves the presentation, on an aircraft, of a “quick preview” notice to airmen (“NOTAM”) display that includes a plurality of stacked flight route portion boxes, each of the plurality of flight route portion boxes pertaining to and being labeled as one of: a departure taxiing portion, a standard instrument departure portion, an en route portion, a standard terminal arrival route portion, an approach portion, and an arrival taxiing portion; each of the plurality of flight route portion boxes graphically displaying flight route symbology pertaining to and labeled as each airport taxiing reference point and/or each aeronautical waypoint that falls within its labeled flight route portion; and wherein at least one of the plurality of flight route portion boxes further graphically displays NOTAM symbology pertaining to at least one of the NOTAMs that are relevant to the flight route.
Abstract:
A system and method of operating a correlative display system for a plurality of display systems on an aircraft includes receiving, by a processor, an identification of a feature from a user interface associated with a first display system of the plurality of display systems. The processor determines a location of the identified feature relative to data displayed on each other display system of the plurality of display systems, wherein the identified feature is not previously displayed on at least one of the other display systems of the plurality of display systems. The processor generates instructions to highlight the identified feature on each other display system of the plurality of display systems at the determine location relative to data displayed on each other display system.
Abstract:
Methods and systems are provided for generating an animated display for an aircraft. The method comprises receiving a user request for a change in a layer shown on a display that shows a view of the flight plan data for the aircraft. The user request is received by a user interface (UI) that is part of a map layer display system located onboard the aircraft. The system determines which specific layer corresponds to user request for a change to the display. When the user request is to add the layer to the display, the opaqueness of the layer increases from zero percent to one-hundred percent. When the user request is to remove the layer from the display, the opaqueness of the layer decreases from one-hundred percent to zero percent. Finally, the system generates instructions to display the layer at the opaqueness on the display.
Abstract:
A method for displaying a flight path navigational procedure includes, but is not limited to, detecting with a position detecting system a current location of the aircraft, obtaining from an electronic storage device a plurality of flight path navigation procedures available for a geographic location, determining with a flight path analysis system a preferred flight path that will be taken by the aircraft, and displaying on a display unit a moving map corresponding with the current location of the aircraft and further displaying a depiction of the plurality of flight path navigation procedures on the moving map. The preferred flight path is displayed with a visual cue that visually differentiates the preferred flight path from the other flight paths of the plurality of flight path navigation procedures.
Abstract:
A system and method are provided for highlighting and selecting one of a plurality of graphical IFR procedure depiction on an aircraft display. A displayed legend includes a plurality of textual procedure identifications, one each for each of the graphical IFR procedure depictions. Movement of a cursor over either a graphical IFR procedure depiction or a textual procedure identification highlights both, and selection thereof removes all other graphical IFR procedure depictions and textual procedure identifications from being displayed.
Abstract:
A system and method are provided for displaying terrain altitudes on an aircraft display that are easily understood by the pilot. A plurality of bands are defined, wherein each band defines a range of altitudes of terrain in the vicinity of the aircraft. A list of altitudes representing each band is displayed in a legend. A band is highlighted when a number associated therewith is selected, and a number is highlighted when the band associated therewith is selected. The band or number may be selected, for example, by cursor, or the band may be selected by position of the aircraft.