摘要:
Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
摘要:
Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
摘要:
Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises an n-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
摘要:
In various embodiments, a photodetector includes a semiconductor substrate and a plurality of pixel regions. Each of the plurality of pixel regions comprises an optically sensitive layer over the semiconductor substrate. A pixel circuit is formed for each of the plurality of pixel regions. Each pixel circuit includes a pinned photodiode, a charge store, and a read out circuit for each of the plurality pixel regions. The optically sensitive layer is in electrical communication with a portion of a silicon diode to form the pinned photodiode. A potential difference between two electrodes in communication with the optically sensitive layer associated with a pixel region exhibits a time-dependent bias; a biasing during a first film reset period being different from a biasing during a second integration period.
摘要:
Optically sensitive devices include a device comprising a first contact and a second contact, each having a work function, and an optically sensitive material between the first contact and the second contact. The optically sensitive material comprises a p-type semiconductor, and the optically sensitive material has a work function. Circuitry applies a bias voltage between the first contact and the second contact. The optically sensitive material has an electron lifetime that is greater than the electron transit time from the first contact to the second contact when the bias is applied between the first contact and the second contact. The first contact provides injection of electrons and blocking the extraction of holes. The interface between the first contact and the optically sensitive material provides a surface recombination velocity less than 1 cm/s.
摘要:
In various example embodiments, the inventive subject matter is an image sensor and methods of formation of image sensors. In an embodiment, the image sensor comprises a semiconductor substrate and a plurality of pixel regions. Each of the pixel regions includes an optically sensitive material over the substrate with the optically sensitive material positioned to receive light. A pixel circuit for each pixel region is also included in the sensor. Each pixel circuit comprises a charge store formed on the semiconductor substrate and a read out circuit. A non-metallic contact region is between the charge store and the optically sensitive material of the respective pixel region, the charge store being in electrical communication with the optically sensitive material of the respective pixel region through the non-metallic contact region.
摘要:
In various example embodiments, an imaging system and method are provided. In an embodiment, the system comprises a first image sensor array, a first optical system to project a first image on the first image sensor array, the first optical system having a first zoom level. A second optical system is to project a second image on a second image sensor array, the second optical system having a second zoom level. The second image sensor array and the second optical system are pointed in the same direction as the first image sensor array and the first optical system. The second zoom level is greater than the first zoom level such that the second image projected onto the second image sensor array is a zoomed in on portion of the first image projected on the first image sensor array. The first image sensor array may include at least four megapixels and the second image sensor array may include one-half or less than the number of pixels in the first image sensor array.
摘要:
In various example embodiments, the inventive subject matter is an image sensor and methods of formation of image sensors. In an embodiment, the image sensor comprises a semiconductor substrate and a plurality of pixel regions. Each of the pixel regions includes an optically sensitive material over the substrate with the optically sensitive material positioned to receive light. A pixel circuit for each pixel region is also included in the sensor. Each pixel circuit comprises a charge store formed on the semiconductor substrate and a read out circuit. A non-metallic contact region is between the charge store and the optically sensitive material of the respective pixel region, the charge store being in electrical communication with the optically sensitive material of the respective pixel region through the non-metallic contact region.
摘要:
In various example embodiments, an imaging system and method are provided. In an embodiment, the system comprises a first image sensor array, a first optical system to project a first image on the first image sensor array, the first optical system having a first zoom level. A second optical system is to project a second image on a second image sensor array, the second optical system having a second zoom level. The second image sensor array and the second optical system are pointed in the same direction as the first image sensor array and the first optical system. The second zoom level is greater than the first zoom level such that the second image projected onto the second image sensor array is a zoomed in on portion of the first image projected on the first image sensor array. The first image sensor array includes at least four megapixels and the second image sensor array includes one-half or less than the number of pixels in the first image sensor array.
摘要:
Various embodiments include methods and apparatuses for forming and using pixels for image sensors. In one embodiment, an image sensor having at least two pixel electrodes per color region, and having at least two modes is disclosed. The example image sensor includes a first, unbinned, mode; and a second, binned, mode. In the first, unbinned mode, the at least two pixel electrodes per color region are to be reset to substantially similar levels. In the second, binned mode, a first pixel electrode of the at the least two pixel electrodes is to be reset to a high voltage that results in efficient collection of photocharge, and a second pixel electrode of the at the least two pixel electrodes is to be reset to a low voltage that results in less efficient collection of photocharge. Other methods and apparatuses are disclosed.