Abstract:
Disclosed are a catalyst, its preparation and use in selective hydrogenation, which catalyst has a porous support grain on which are deposited palladium and silver, and at least one alkali and/or alkaline earth metal; the porous support contains a refractory silica, alumina and/or silica-alumina oxide, where at least 80 wt. % of the palladium is distributed in a crust at the periphery of the support, and at least 80 wt. % of the silver is distributed in a crust at the periphery of the support, the local content of palladium at each point along the diameter of the grain follows the same course as the local content of silver.
Abstract:
The invention relates to a method for selective hydrogenation of a hydrocarbon feedstock that contains at least 2 carbon atoms per molecule and that has a final boiling point that is less than or equal to 250° C. and that comprises at least one polyunsaturated compound, in which in the presence of hydrogen, said feedstock is brought into contact with at least one catalyst that comprises a substrate and an active metal phase deposited on said substrate; said active metal phase comprises copper and at least one metal that is selected from between nickel and cobalt in a molar ratio of Cu:(Ni and/or Co) of greater than 1.
Abstract:
The invention concerns a catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 8 nm to 25 nm, a median macropore diameter of more than 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.30 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.34 mL/g or more. The invention also concerns the process for the preparation of said catalyst, and its use in a hydrogenation process.
Abstract:
A catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising any metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 12 nm to 25 nm, a median macropore diameter in the range 50 to 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.40 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.45 mL/g or more. The process for the preparation of said catalyst, and its use in a hydrogenation process.
Abstract:
A supported catalyst having a calcined, predominantly aluminium, oxide support and an active phase of 5 to 65% by weight nickel with respect to the total mass of the catalyst, said active phase having no group VIB metal, the nickel particles having a diameter less than or equal to 20 nm, said catalyst having a mesopore median diameter greater than or equal to 14 nm, a mesopore volume measured by mercury porosimetry greater than or equal to 0.45 mL/g, a total pore volume measured by mercury porosimetry greater than or equal to 0.45 mL/g, a macropore volume less than 5% of the total pore volume, said catalyst being in the form of grains having an average diameter comprised between 0.5 and 10 mm. The invention also relates to the process for the preparation of said catalyst and the use thereof in a hydrogenation process.
Abstract:
Disclosed are a catalyst, its preparation and use in selective hydrogenation, which catalyst has a porous support grain on which are deposited palladium and silver, and at least one alkali and/or alkaline earth metal; the porous support contains a refractory silica, alumina and/or silica-alumina oxide, where at least 80 wt. % of the palladium is distributed in a crust at the periphery of the support, and at least 80 wt. % of the silver is distributed in a crust at the periphery of the support, the local content of palladium at each point along the diameter of the grain follows the same course as the local content of silver.
Abstract:
Disclosed are a supported catalyst, its method of preparation and use in hydrogenation methods, which catalyst contains an oxide substrate that is for the most part calcined aluminum and an active phase that contains nickel, with the nickel content between 5 and 65% by weight in relation to the total mass of the catalyst, with the active phase not containing a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, the catalyst having a median mesopore diameter of between 14 nm and 30 nm, a median macropore diameter of between 50 and 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.40 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.42 mL/g.
Abstract:
The invention relates to a supported catalyst that comprises an oxide substrate that is for the most part calcined aluminum and an active phase that comprises nickel, with the nickel content being between 5 and 65% by weight of said element in relation to the total mass of the catalyst, with said active phase not comprising a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, said catalyst having a median mesopore diameter of between 8 nm and 25 nm, a median macropore diameter of greater than 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.30 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.34 mL/g. The invention also relates to the method for preparation of said catalyst and its use in a hydrogenation method.
Abstract:
The invention concerns a method for selectively hydrogenating a hydrocarbon charge containing at least two carbon atoms per molecule, having a final boiling point which is less than or equal to 250° C., and comprising at least one polyunsaturated compound, wherein the charge, in the presence of hydrogen, is brought into contact with at least one catalyst comprising a carrier and an active metal phase deposited on the carrier, the active metal phase comprising iron and at least one metal selected from zinc and copper in a molar ratio of Fe:(Zn and/or Cu) of between 0.35 and 0.99.