Abstract:
The present invention relates to a process for the partial upgrading of properties of heavy and/or extra-heavy crude oil by low severity catalytic hydrotreatment in only one reaction step. The process of the present invention is obtained upgraded oil with properties required for its transportation from offshore platforms either to maritime terminal or to refining centers. The process reduces the viscosity of heavy and/or extra-heavy crude oil, and decreases the concentration of impurities, such as sulfur, nitrogen, and metals, in such a way that heavy and/or extra-heavy crude oils can be transported to maritime terminals or to refining centers. The process increases the lifetime of the catalyst and decreased operating costs by reducing consumption of utilities because the operation of the process is carried out at lower severity. The partially upgraded oils obtained in this process can be transported directly to the maritime terminals or to existing refineries.
Abstract:
The present invention relates to heterogeneous acid catalysts comprising or consisting of mixed metal salts, of lithium and aluminum phosphates and sulfates, and combinations with metallic cations, such as magnesium, titanium, zinc, zirconium and gallium, to provide adequate Lewis acidity; organic or inorganic porosity promoters, such as polysaccharides; and agglomerates, such as clays, kaolin and metal oxides of the type MxOy, where; M=Al, Mg, Sr, Zr or Ti, and other metals of groups IA, IIA and IVB, x=1 or 2 and y=2 or 3, for the formation of particles. A process is disclosed for obtaining from the catalyst by the hydrolysis of aluminum lithium hydride with water and oxygenated solvent, such as an ether. The catalysts are used in batch reactor and continuous flow systems in reactions that require moderate Lewis acidity, such as refining, petrochemical and general chemistry, including the transesterification of glycerides to produce alkyl esters.
Abstract:
The present invention relates to the production of biodiesel and alkyl esters by the transesterification of triglyceride esters, with alcohols in heterogeneous phase in the presence of heterogeneous catalysts, with yields higher than 80%, at a temperature from 0 to 300° C., residence time from 20 minutes to 20 h, space velocity of 0.1 to 10 h−1, pressure of 25-100 kg/cm2 (24.5-98.07 bar), methanol/oil molar ratio of 10 to 40 and catalyst concentration of 0.001 to 20 weight % based on tri-, di- or monoglyceride. The method produces biodiesel and alkyl esters by transesterification of tri-, di- or mono-glycerides, from palm, jatropha, castor, soybean and sunflower oils, wherein the alcohoxyls R1O, R2O and R3O of the glycerides are C1 to C24 and a C1-C4 alcohol, such as methanol, in an alcohol:oil ratio from 3:1 to 50:1. The transesterification reaction produces biodiesel while avoiding loss of catalyst, contaminating liquid effluents and eliminating undesirable hydrolysis of triglycerides, diglycerides and monoglycerides into free fatty acids and saponification that generate soaps.