Abstract:
A smart display including one or more groups of smart pixels and at least one graphics engine. The at least one graphics engine is fragmented into GPU (graphics processing unit) minute cores. The GPU minute cores are distributed throughout the smart display. The smart pixels with distributed graphics within the smart display perform deep learning. Libraries stored on GPU minute core embedded memory are used to perform object identification using deep learning. The smart display monitors for pixel degradation and, if necessary, performs pixel enhancement.
Abstract:
Systems, apparatuses and methods may a performance-enhanced computing system comprising a sensor for measuring luminance values corresponding to light focused onto the sensor at a plurality of pixel locations, a memory including a set of instructions, and a processor. The processor executes a set of instructions causing the system to generate a multi-segment tone mapping curve, generate a set of tone mapping values corresponding to the multi-segment tone mapping curve for equally spaced input values between zero and one for storage into a look up table, and process the luminance values using the look up table to apply the tone mapping curve to the luminance values of the pixels.
Abstract:
Systems, apparatuses and methods may provide for technology that partitions a high dynamic range (HDR) image into a plurality of regions and determines, on a per region basis, a luminance level of the HDR image. Additionally, the technology may select, on the per image basis, a encoding amount for each region in the plurality of regions based on the luminance level.
Abstract:
A processing unit, comprising a display interface to control a foldable display with multiple segments created by fold lines in the foldable display. The processing unit also including a plurality of lanes to connect the display interface to the foldable display, where each segment of the foldable display is connected to a lane. The processing unit also including a multi-segment protocol component to instruct the display interface to drive data to each segment of the display through the plurality of lanes.
Abstract:
A human interface sink device may be selectively enabled with at least one of an embedded keyboard, embedded mouse, touch-based keyboard, a touch-based mouse function in addition to a multi-touch function.
Abstract:
A disclosed example involves receiving a message with an action to be performed; determining the message type; and based on the message type, performing an action specified in the message.
Abstract:
A smart display including one or more groups of smart pixels and at least one graphics engine. The at least one graphics engine is fragmented into GPU (graphics processing unit) minute cores. The GPU minute cores are distributed throughout the smart display. The smart pixels with distributed graphics within the smart display perform deep learning. Libraries stored on GPU minute core embedded memory are used to perform object identification using deep learning. The smart display monitors for pixel degradation and, if necessary, performs pixel enhancement.
Abstract:
Resources may be managed in a topology for audio/video streaming. The topology includes audio/video sources and sinks and intervening branch devices. Messages between these sources, sinks, and branch devices may be used for resource management.
Abstract:
Rotation between landscape and portrait modes or vice versa may be supported in wireless display interfaces coupled to a platform by having the platform sense rotation change in the platform or in the display. This enables counter rotation of the frame buffer or rotated rendering of the content to ensure that content is presented upright to the end user.
Abstract:
Systems, apparatuses and methods may provide for technology that partitions a high dynamic range (HDR) image into a plurality of regions and determines, on a per region basis, a luminance level of the HDR image. Additionally, the technology may select, on the per image basis, a encoding amount for each region in the plurality of regions based on the luminance level.