Abstract:
A layer arrangement in accordance with various embodiments may include: a first layer having a side; one or more nanoholes in the first layer that are open towards the side of the first layer; a second layer filling at least part of the nanoholes and covering at least part of the side of the first layer, the second layer including at least one of the following materials: a metal or metal alloy, a glass material, a polymer material, a ceramic material.
Abstract:
A method of forming a metallization layer over a semiconductor substrate includes depositing a blanket layer of a diffusion barrier liner over an inter level dielectric layer, and depositing a blanket layer of an intermediate layer over the diffusion barrier liner. A blanket layer of a power metal layer including copper is deposited over the intermediate layer. The intermediate layer includes a solid solution of a majority element and copper. The intermediate layer has a different etch selectivity from the power metal layer. After depositing the power metal layer, structuring the power metal layer, the intermediate layer, and the diffusion barrier liner.
Abstract:
A connection body which comprises a base structure at least predominantly made of a semiconductor oxide material or glass material, and an electrically conductive wiring structure on and/or in the base structure, wherein the electrically conductive wiring structure comprises at least one vertical wiring section with a first lateral dimension on and/or in the base structure and at least one lateral wiring section connected with the at least one vertical wiring section, wherein the at least one lateral wiring section has a second lateral dimension on and/or in the base structure, which is different to the first lateral dimension.
Abstract:
An electronic module includes a semiconductor package including a semiconductor chip and an electrically insulating encapsulation body encapsulating the semiconductor chip, the encapsulation body completely covering a second main face and four side faces of the semiconductor chip, wherein a first main face of the semiconductor chip that is opposite the first main face is exposed from the encapsulation body, a heat spreader attached to the semiconductor package, the heat spreader completely covering the first main face of the semiconductor chip, and an electrically insulating layer disposed on the heat spreader remote from the semiconductor package. The electrically insulating layer is completely separated from the semiconductor chip.
Abstract:
A connection body which comprises a base structure at least predominantly made of a semiconductor oxide material or glass material, and an electrically conductive wiring structure on and/or in the base structure, wherein the electrically conductive wiring structure comprises at least one vertical wiring section with a first lateral dimension on and/or in the base structure and at least one lateral wiring section connected with the at least one vertical wiring section, wherein the at least one lateral wiring section has a second lateral dimension on and/or in the base structure, which is different to the first lateral dimension.
Abstract:
A method of forming a metallization layer over a semiconductor substrate includes depositing a blanket layer of a diffusion barrier liner over an inter level dielectric layer, and depositing a blanket layer of an intermediate layer over the diffusion barrier liner. A blanket layer of a power metal layer including copper is deposited over the intermediate layer. The intermediate layer includes a solid solution of a majority element and copper. The intermediate layer has a different etch selectivity from the power metal layer. After depositing the power metal layer, structuring the power metal layer, the intermediate layer, and the diffusion barrier liner.
Abstract:
An electronic module includes a semiconductor package, a heat spreader attached to the semiconductor package and an electrically insulating layer disposed on the heat spreader remote from the semiconductor package.