Abstract:
One or more semiconductor manufacturing methods and/or semiconductor arrangements are provided. In an embodiment, a silicon carbide (SiC) layer is provided. The SiC layer has a first portion overlying a second portion. The first portion has a first side distal the second portion and a second side proximal the second portion. The first portion is converted into a porous layer overlying the second portion. The porous layer has a first side distal the second portion and a second side proximal the second portion. The porous layer is removed to expose a first side of the second portion. After removing the porous layer, the first side of the second portion has a surface roughness less than a surface roughness of the first side of the first portion and/or less than a surface roughness of the first side of the porous layer.
Abstract:
A method of forming a metallization layer over a semiconductor substrate includes depositing a blanket layer of a diffusion barrier liner over an inter level dielectric layer, and depositing a blanket layer of an intermediate layer over the diffusion barrier liner. A blanket layer of a power metal layer including copper is deposited over the intermediate layer. The intermediate layer includes a solid solution of a majority element and copper. The intermediate layer has a different etch selectivity from the power metal layer. After depositing the power metal layer, structuring the power metal layer, the intermediate layer, and the diffusion barrier liner.
Abstract:
A method for separating semiconductor die includes forming a porous region on a semiconductor wafer and separating the die at the porous region using mechanical or other means.
Abstract:
A semiconductor device includes a semiconductor chip having a first main surface and a second main surface. A chip electrode is disposed on the first main surface. The chip electrode includes a first metal layer and wherein the first metal layer is arranged between the semiconductor chip and the second metal layer.
Abstract:
According to various embodiments, a method for processing an electronic device may include: forming a patterned hard mask layer over a power metallization layer, the patterned hard mask layer exposing at least one surface region of the power metallization layer; and patterning the power metallization layer by wet etching of the exposed at least one surface region of the power metallization layer.
Abstract:
A method for processing a semiconductor wafer in accordance with various embodiments may include: providing a semiconductor wafer including at least one chip and at least one kerf region adjacent to the at least one chip, the kerf region including at least one auxiliary structure; applying a mask layer to the semiconductor wafer; removing the at least one auxiliary structure in the at least one kerf region; removing the applied mask layer; and separating the semiconductor wafer along the at least one kerf region.
Abstract:
According to various embodiments, a method for processing an electronic device may include: forming a patterned hard mask layer over a power metallization layer, the patterned hard mask layer exposing at least one surface region of the power metallization layer; and patterning the power metallization layer by wet etching of the exposed at least one surface region of the power metallization layer.
Abstract:
A method of forming a metallization layer over a semiconductor substrate includes depositing a blanket layer of a diffusion barrier liner over an inter level dielectric layer, and depositing a blanket layer of an intermediate layer over the diffusion barrier liner. A blanket layer of a power metal layer including copper is deposited over the intermediate layer. The intermediate layer includes a solid solution of a majority element and copper. The intermediate layer has a different etch selectivity from the power metal layer. After depositing the power metal layer, structuring the power metal layer, the intermediate layer, and the diffusion barrier liner.
Abstract:
A method for processing a semiconductor wafer in accordance with various embodiments may include: providing a semiconductor wafer including at least one chip and at least one kerf region adjacent to the at least one chip, the kerf region including at least one auxiliary structure; applying a mask layer to the semiconductor wafer; removing the at least one auxiliary structure in the at least one kerf region; removing the applied mask layer; and separating the semiconductor wafer along the at least one kerf region.