Abstract:
A method for forming interphase layers in ceramic matrix composites. The method forms interphase layers in ceramic matrix composites thereby enabling higher matrix densities to be achieved without sacrificing crack deflection and/or toughness. The methods of the present invention involve the use fugitive material-coated fibers. These fibers are then infiltrated with a ceramic matrix slurry. Then, the fugitive material is removed and the resulting material is reinfiltrated with an interphase layer material. The ceramic matrix composite is then fired. Additional steps may be included to densify the ceramic matrix or to increase the strength of the interphase layer. The method is useful for the formation of three dimensional fiber-reinforced ceramic matrix composites envisioned for use in gas turbine components.
Abstract:
A composite material (10) formed of a ceramic matrix composite (CMC) material (12) protected by a ceramic insulating material (14). The constituent parts of the insulating material are selected to avoid degradation of the CMC material when the two layers are co-processed. The CMC material is processed to a predetermined state of shrinkage before wet insulating material is applied against the CMC material. The two materials are then co-fired together, with the relative amount of shrinkage between the two materials during the firing step being affected by the amount of pre-shrinkage of the CMC material during the bisque firing step. The shrinkage of the two materials during the co-firing step may be matched to minimize shrinkage stresses, or a predetermined amount of prestress between the materials may be achieved. An aluminum hydroxyl chloride binder material (24) may be used in the insulating material in order to avoid degradation of the fabric (28) of the CMC material during the co-firing step.
Abstract:
A multiple laser sight system for an archery bow or the like configured so that the multiple laser systems can be calibrated together and having features such that the user can use one laser system during the day and one laser system during the light. The laser sight is further configured to not interfere with the optional use of conventional sighting pins and the use of evening infrared systems, like the prior art use of night vision goggles.
Abstract:
A multiple laser sight system for an archery bow or the like configured so that the multiple laser systems can be calibrated together and having features such that the user can use one laser system during the day and one laser system during the light. The laser sight is further configured to not interfere with the optional use of conventional sighting pins and the use of evening infrared systems, like the prior art use of night vision goggles.
Abstract:
Embodiments of the invention relate to a robust turbine vane made of stacked airfoil-shaped CMC laminates. Each laminate has an in-plane direction and a through thickness direction substantially normal to the in-plane direction. The laminates have anisotropic strength characteristics in which the in-plane tensile strength is substantially greater than the through thickness tensile strength. Thus, the laminates can provide strength in the direction of high thermal gradients and, thus, withstand the associated high thermal stresses. The laminates are relatively weak in through thickness (interlaminar) tension, but, in operation, relatively low through thickness tensile stresses can be expected. The laminates can be strong in through thickness compression; accordingly, the laminate stack can be held in through thickness compression by one or more fasteners. The CMC material can permit the inclusion of additional features such as cooling passages, ribs, spars, and thermal coatings, without compromising the strength characteristics of the material.
Abstract:
A method of manufacturing a hybrid structure (100) having a layer of CMC material (28) defining an interior passageway (24) and a layer of ceramic insulating material (18) lining the passageway. The method includes the step of casting the insulating material to a first thickness required for effective casting but in excess of a desired second thickness for use of the hybrid structure. An inner mold (14) defining a net shape desired for the passageway remains in place after the casting step to mechanically support the insulating material during a machining process used to reduce the thickness of the insulating material from the as-cast first thickness to the desired second thickness. The inner mold also provides support as the CMC material is deposited onto the insulating material. The inner mold may include a fugitive material portion (20) to facilitate its removal after the CMC material is formed.
Abstract:
A composite structure (62) having a bond enhancement member (76) extending across a bond joint (86) between a ceramic matrix composite (CMC) material (80) and a ceramic insulation material (82), and a method of fabricating such a structure. The bond enhancement member may extend completely through the CMC material to be partially embedded in a core material (84) bonded to the CMC material on an opposed side from the insulation material. A mold (26) formed of a fugitive material having particles (18) of a bond enhancement material may be used to form the CMC material. A two-piece mold (38, 46) may be used to drive a bond enhancement member partially into the CMC material. A compressible material (56) containing the bond enhancement member may be compressed between a hard tool (60) and the CMC material to drive a bond enhancement member partially into the CMC material. A surface (98) of a ceramic insulation material (92) having a bond enhancement member (96) extending therefrom may be used as a mold for laying up a CMC material.
Abstract:
A method for forming interphase layers in ceramic matrix composites. The method forms interphase layers in ceramic matrix composites thereby enabling higher matrix densities to be achieved without sacrificing crack deflection and/or toughness. The methods of the present invention involve the use fugitive material-coated fibers. These fibers are then infiltrated with a ceramic matrix slurry. Then, the fugitive material is removed and the resulting material is reinfiltrated with an interphase layer material. The ceramic matrix composite is then fired. Additional steps may be included to densify the ceramic matrix or to increase the strength of the interphase layer. The method is useful for the formation of three dimensional fiber-reinforced ceramic matrix composites envisioned for use in gas turbine components.
Abstract:
A thermal barrier layer (20) is formed by exposing an oxide ceramic material to a thermal regiment to create a surface heat affected zone effective to protect an underlying structural layer (18) of the material. The heat affected surface layer exhibits a lower strength and higher thermal conductivity than the underlying load-carrying material; however, it retains a sufficiently low thermal conductivity to function as an effective thermal barrier coating. Importantly, because the degraded material retains the same composition and thermal expansion characteristics as the underlying material, the thermal barrier layer remains integrally connected in graded fashion with the underlying material without an interface boundary there between. This invention is particularly advantageous when embodied in an apparatus formed of an oxide-oxide ceramic matrix composite (CMC) material wherein reinforcing fibers (24) are anchored in the underlying load-carrying portion and extend into the non-structural thermal barrier portion to provide support and to function as surface crack arrestors. In one embodiment an airfoil (10) is formed of a stacked plurality of CMC plates having such a heat-affected thermal barrier layer formed thereon.
Abstract:
An airfoil (30) having a continuous layer of ceramic matrix composite (CMC) material (34) extending from a suction side (33) to a pressure side (35) around a trailing edge portion (31). The CMC material includes an inner wrap (36) extending around an inner trailing edge portion (38) and an outer wrap (40) extending around an outer trailing edge portion (42). A filler material (44) is disposed between the inner and outer wraps to substantially eliminate voids in the trailing edge portion. The filler material may be pre-processed to an intermediate stage and used as a mandrel for forming the outer trailing edge portion, and then co-processed with the inner and outer wraps to a final form. The filler material may be pre-processed to include a desired mechanical feature such as a cooling passage (22) or a protrusion (48). The filler material may include an upper layer (77) and a lower layer (78) separated by an intermediate layer (76) that extends to between the inner wrap and the outer wrap along the suction and/or pressure sides.