Abstract:
A robot includes a body, a first arm, and a second arm. The first arm includes one joint, an adjacent joint that is adjacent to the one joint, and another adjacent joint that is adjacent to the adjacent joint. When the first arm is extended in a vertical orientation relative to the body, the one joint of the first arm has a rotation axis that is offset by a first distance in a first horizontal direction from a rotation axis of the adjacent joint of the first arm, and the another adjacent joint of the first arm has a rotation axis that is offset by a second distance in a second horizontal direction from the rotation axis of the adjacent joint of the first arm. The first horizontal direction is opposite to the second horizontal direction.
Abstract:
A robot system includes a robot arm, one or more actuators that are provided in the robot arm to drive the robot arm, a sensor unit that detects an external force applied to at least one of the robot arm and the actuators, and a controller that controls an operation of each of the actuators and limits a torque instruction value for each of the actuators on the basis of a detection result of the sensor unit.
Abstract:
A robot system includes an end effector, a robot arm, and a controller. The end effector includes a pressure roller and a linear motion mechanism. The linear motion mechanism is configured to move the pressure roller with respect to a pressed surface. The robot arm is configured to support the end effector. The controller is configured to control the linear motion mechanism to move the pressure roller to make a pressing force of the pressure roller against the pressed surface approximately uniform.
Abstract:
A seam welding robot includes a robot arm and a welding unit that is coupled to the robot arm. The welding unit includes a pair of roller electrodes. The pair of roller electrodes rotates following motion of the robot arm while sandwiching and pressurizing welding targets. The welding unit passes a welding electric current between the pair of roller electrodes to seam-weld the welding targets.
Abstract:
A machining apparatus includes a robot and a controller. A target acquirer acquires a target value of a position and posture of a distal end of the robot. With a movement target value of a distance adjustment actuator of the robot being fixed, a first calculator calculates movement target values of first to third actuators and posture adjustment actuators of the robot corresponding to the target value of the position and posture. A determiner determines whether a movement target value of one of the actuators is within an allowable range. When out of the allowable range, a second calculator calculates the movement target values of the actuators corresponding to the target value of the position and posture to cause the movement target value to fall within the range. An outputter controls the actuators in accordance with the respective movement target values.
Abstract:
A robot system includes a robot and a motion control unit. The robot includes a bottom, a swiveling base, first to third arms. A bottom side of the first arm is supported on the swiveling base swivelably around a horizontal-direction second axis. A bottom side of the redundant arm is supported on a leading side of the first arm swivelably around an axis parallel to the second axis. A bottom side of the second arm is supported on a leading side of the redundant arm swivelably around a third axis parallel to the second axis. A bottom side of the third arm is supported on a leading side of the second arm rotatably around a fourth axis perpendicular to the third axis. The motion control unit activates the redundant arm so that a control point provided on the fourth axis linearly moves while maintaining a direction of the fourth axis.
Abstract:
A machining apparatus includes a robot including a first arm portion, a second arm portion, a tip portion, a second actuator swinging the first arm portion around a second axis, a third actuator swinging the second arm portion around a third axis, a seventh actuator adjusting a distance between the second axis and the third axis, and an end effector provided to a tip portion and applying machining to a workpiece. The robot is positioned such that a movable range of a tip portion of the first arm portion or a base end portion of the second arm portion interferes with the workpiece when the first arm portion is rotated around the second axis, where the distance is made longest, in a state where the robot exactly faces the workpiece.
Abstract:
A robot in an embodiment includes a robot body, an end effector, a cable, and one or more coupling portions. The end effector is connected to the robot body. The cable is composed of a plurality of sub cables, arranged along the robot body, and connected to the end effector. Each of the coupling portion is provided between one sub cable and an adjacent sub cable of the sub cables to couple the one and adjacent sub cables together.
Abstract:
A robot according to an aspect of an embodiment includes a robot arm, an attaching portion, an end effector, an end-effector-side cable, and a robot-side cable. The attaching portion is provided on a leading end of the robot arm. The end effector is attached to the attaching portion. The end-effector-side cable extends from the end effector. The robot-side cable is arranged along the robot arm and is connected to the end-effector-side cable by terminal connection at a position closer to the end effector than the attaching portion.