Abstract:
Targets, target elements and target design method are provided, which comprise designing a target structure to have a high contrast above a specific contrast threshold to its background in polarized light while having a low contrast below the specific contrast threshold to its background in non-polarized light. The targets may have details at device feature scale and be compatible with device design rules yet maintain optical contrast when measured with polarized illumination and thus be used effectively as metrology targets. Design variants and respective measurement optical systems are likewise provided.
Abstract:
Targets, target elements and target design method are provided, which comprise designing a target structure to have a high contrast above a specific contrast threshold to its background in polarized light while having a low contrast below the specific contrast threshold to its background in non-polarized light. The targets may have details at device feature scale and be compatible with device design rules yet maintain optical contrast when measured with polarized illumination and thus be used effectively as metrology targets. Design variants and respective measurement optical systems are likewise provided.
Abstract:
Scatterometry overlay targets as well as target design and measurement methods are provided, which mitigate the effects of grating asymmetries in diffraction based overlay measurements. Targets comprise additional cells with sub-resolved structures replacing resolved coarse pitch gratings and/or comprise alternating sub-resolved structures with coarse pitch periodicity—to isolate and remove inaccuracies that result from grating asymmetries. Measurement methods utilize orthogonally polarized illumination to isolate the grating asymmetry effects in different measurement directions, with respect to the designed target structures.
Abstract:
Metrology targets, target design methods and metrology methods are provided. Metrology targets comprise target elements belonging to two or more target element types. Each target element type comprises unresolved features which offset specified production parameters to a specified extent and thus provide sensitivity monitoring and optimization tools for process parameters such as focus and dose.
Abstract:
Methods are provided for designing metrology targets and estimating the uncertainty error of metrology metric values with respect to stochastic noise such as line properties (e.g., line edge roughness, LER). Minimal required dimensions of target elements may be derived from analysis of the line properties and uncertainty error of metrology measurements, by either CDSEM (critical dimension scanning electron microscopy) or optical systems, with corresponding targets. The importance of this analysis is emphasized in view of the finding that stochastic noise may have increased importance with when using more localized models such as CPE (correctables per exposure). The uncertainty error estimation may be used for target design, enhancement of overlay estimation and evaluation of measurement reliability in multiple contexts.
Abstract:
A method of monitoring overlay is used in a manufacturing process in which successive layers are deposited one over another to form a stack. Each layer may include a periodic structure such as a diffraction grating to be aligned with a periodic structure in another layer. The stacked periodic structures may be illuminated to form + and − first order diffraction patterns from the periodic structures. An image of the stacked periodic structures may be captured including + and − diffraction patterns. The + and − diffraction patterns may be compared to calculate the overlay between successive layers.
Abstract:
A method of monitoring overlay is used in a manufacturing process in which successive layers are deposited one over another to form a stack. Each layer may include a periodic structure such as a diffraction grating to be aligned with a periodic structure in another layer. The stacked periodic structures may be illuminated to form + and − first order diffraction patterns from the periodic structures. An image of the stacked periodic structures may be captured including + and − diffraction patterns. The + and − diffraction patterns may be compared to calculate the overlay between successive layers.