Abstract:
The present disclosure relates to neural electrode technology for measuring a biosignal of a human or applying a neural signal to the human, and a neural electrode assembly includes a body that is inserted into a uterus in a non-invasive manner, a recording neural electrode formed to measure a uterine contraction-evoked neural signal, the recording neural electrode being coupled to the body, and a stimulating neural electrode formed to stimulate a nerve entering the uterus to suppress the uterine contraction, the stimulating neural electrode being coupled to the body.
Abstract:
A nerve electrode that is inserted into a living body and that is configured to attach to nerves is provided. The nerve electrode that is inserted into a living body and that is configured to attach to nerves includes: i) a flexible substrate; ii) a plurality of electrodes that are separately positioned on the flexible substrate; and iii) an insulating layer that is positioned at a separation space of the plurality of electrodes and that insulates the plurality of electrodes. The plurality of electrodes include i) at least one linear electrode, and ii) a planar electrode that is separated from the linear electrode. An anti-inflammatory drug transfer layer is positioned on the planar electrode.
Abstract:
A nerve electrode that is inserted into a living body and that is configured to attach to nerves is provided. The nerve electrode that is inserted into a living body and that is configured to attach to nerves includes: i) a flexible substrate; ii) a plurality of electrodes that are separately positioned on the flexible substrate; and iii) an insulating layer that is positioned at a separation space of the plurality of electrodes and that insulates the plurality of electrodes. The plurality of electrodes include i) at least one linear electrode, and ii) a planar electrode that is separated from the linear electrode. An anti-inflammatory drug transfer layer is positioned on the planar electrode.
Abstract:
The present disclosure relates to a system for monitoring post-translational modification of protein using a biosensor with a gap, which performs with high reliability a diagnosis of a disease associated with a target protein for which impedance is measured, by measuring an impedance of a sample introduced into a sensor and calculating a change rate of the measured impedance, and to a method of manufacturing the biosensor used for the system.
Abstract:
The present disclosure relates to an apparatus and a method for extracting genome, capable of acquiring a sufficient amount of genome for genetic analysis with high extraction efficiency, even with a small amount of target sample.
Abstract:
The present disclosure relates to stomach cancer diagnosis using tryptophan metabolism rate in one aspect, and it relates to an invention using change of tryptophan metabolism rate in a stomach cancer patient, which is different from a normal person.