Abstract:
A method of manufacturing a phase-change random access memory includes: sequentially depositing an insulating layer, a first electrode layer, a phase change material layer, and a transfer material layer on a substrate; forming an array pattern in the transfer material layer using a laser interference lithography process; forming a metal layer on the transfer material layer having the array pattern formed; forming a second electrode layer by removing the transfer material layer; and forming a phase change layer by etching the phase change material layer using the second electrode layer as a mask. Accordingly, the manufacturing process of the phase-change random access memory may achieve an increase in speed and may be simplified.
Abstract:
A method of manufacturing a perovskite multilayered structure includes providing a substrate, forming a first perovskite layer on the substrate, forming a second perovskite layer by a reaction between the halogen compounds and at least one of the metal halides, the metal oxides, or the metal sulfides.
Abstract:
A method of manufacturing a perovskite multilayered structure includes providing a substrate, forming a first perovskite layer on the substrate, forming a second perovskite layer by a reaction between the halogen compounds and at least one of the metal halides, the metal oxides, or the metal sulfides.
Abstract:
Provided is a concentration ratio controlling apparatus for concentration type solar cells. The concentration ratio controlling apparatus may include a first condensing unit to primarily concentrate quantity of light that is irradiated from a light source; a second condensing unit disposed between a lower portion of the first condensing unit and a solar cell to secondarily concentrate the quantity of light that has passed through the first condensing unit and thereby irradiate the secondarily concentrated light toward the solar cell; an adjustment unit disposed in an optical path between the light source and the first condensing unit to adjust a concentration area of the first condensing unit based on an external force, and thereby adjust the quantity of light that is concentrated by the first condensing unit; and a control unit to analyze an input signal and thereby supply a corresponding drive control signal to the adjustment unit.