摘要:
An opto-semiconductor device. An opto-semiconductor element includes a semiconductor substrate, a multilayered semiconductor layer formed on a first surface of the semiconductor substrate and having a resonator, a first electrode with multiple conductive layers formed on the multilayered semiconductor layer, and a second electrode formed on a second surface of the semiconductor substrate. A support substrate has a first surface formed with a fixing portion having a conductive layer for fixing the first electrode connected thereto through a bonding material. Bonding material and conductive layers forming the first electrode react to form a reaction layer. The difference in thermal expansion coefficient between semiconductor substrate and support substrate is not more than ±50%. A second barrier metal layer not reactive with bonding material is formed inside the first electrode uppermost conductive layer, while uppermost layer reacts with the bonding material to form the reaction layer.
摘要:
A memory cell mat is divided into a plurality of entries, and an arithmetic logic unit is arranged corresponding to each entry. Between the entries and the corresponding arithmetic logic units, arithmetic/logic operation is executed in bit-serial and entry-parallel manner. Where parallel operation is not very effective, data is transferred in entry-serial and bit-parallel manner to a group of processors provided at a lower portion of the memory mat. In this manner, a large amount of data can be processed at high speed regardless of the contents of operation or data bit width.
摘要:
A gain controlling apparatus is provided with: an adjusting device (6, 7, 8) for adjusting a gain of a generation signal, which is generated on the basis of a light reception signal obtained by receiving a reflection light of a light beam from an information recording medium (1); and a detecting device (21, 14, 16) for detecting whether or not the generation signal is generated and outputting a detection signal when the generation signal is generated. The gain controlling apparatus is also provided with a controlling device (18) for controlling the adjusting device to increase the gain by a predetermined value set in advance when the detection signal is not outputted by the detecting device.
摘要:
A memory cell mat is divided into a plurality of entries, and an arithmetic logic unit is arranged corresponding to each entry. Between the entries and the corresponding arithmetic logic units, arithmetic/logic operation is executed in bit-serial and entry-parallel manner. Where parallel operation is not very effective, data is transferred in entry-serial and bit-parallel manner to a group of processors provided at a lower portion of the memory mat. In this manner, a large amount of data can be processed at high speed regardless of the contents of operation or data bit width.
摘要:
A memory cell mat is divided into a plurality of entries, and an arithmetic logic unit is arranged corresponding to each entry. Between the entries and the corresponding arithmetic logic units, arithmetic/logic operation is executed in bit-serial and entry-parallel manner. Where parallel operation is not very effective, data is transferred in entry-serial and bit-parallel manner to a group of processors provided at a lower portion of the memory mat. In this manner, a large amount of data can be processed at high speed regardless of the contents of operation or data bit width.
摘要:
A method for reading tag data is provided, involving reading a compressed data file that includes compressed data and tag data of a fixed length appended to the compressed data at a predetermined position, and performing a predetermined process based on the type of the compressed data. The reading process of the compressed data file includes first searching for the starting position of the tag data of the compressed data file and retrieving the tag data, followed by searching for the starting position of the compressed data.
摘要:
An immunoassay for detecting an antigen in a sample, by: (a) sequentially contacting the sample with (i) a first antibody which is capable of specifically binding to a first binding site on the antigen, and then (ii) a second antibody which is capable of specifically binding to a second binding site on the antigen, thereby forming, when the antigen is present in the sample, an agglutinate comprising the first antibody, the antigen, and the second antibody; followed by (b) optically measuring the amount of the agglutinate.
摘要:
It is an objective to control the occurrence of the disorder of a far-field pattern and of an optical axial shift. A manufacturing method of a semiconductor laser device has the step for preparing a semiconductor substrate which has growth of a multi-layer including an active layer, the step for forming a mask over the growth of a multi-layer, and a step for forming a stripe-shaped ridge by dry etching and wet etching. A structure stacking a p-type AlGaInP layer, an etch-stop layer, a p-type Alx=0.7GaInP layer, a p-type Alx=0.6GaInP layer, a p-type GaAs layer, in order, over the active layer is taken in order to make the tailing part created in the dry etching process smaller by wet etching. The tailing part is composed of a p-type Alx=0.7GaInP layer including a high mixed crystal ratio of aluminum. Therefore, the p-type Alx=0.7GaInP layer is etched faster than the p-type Alx=0.6GaInP layer during wet etching, so that the tailing part becomes smaller, the far-field pattern of the semiconductor laser device is not disordered, and the optical axis shift does not occur.
摘要翻译:目的是控制远场图案和光轴向偏移的发生。 半导体激光器件的制造方法具有制备半导体衬底的步骤,该半导体衬底具有包括有源层的多层的生长,用于在多层生长上形成掩模的步骤,以及用于形成 通过干蚀刻和湿蚀刻形成条形脊。 在有源层上依次堆叠p型AlGaInP层,蚀刻停止层,p型Al x = 0.7GaInP层,p型Al x = 0.6 GaInP层,p型GaAs层的结构 是为了使通过湿法蚀刻在干式蚀刻工艺中产生的拖尾部分变得更小。 尾部由包含铝的高混合比的p型Al x = 0.7GaInP层构成。 因此,在湿蚀刻期间,p型Al x = 0.7GaInP层比p型Al x = 0.6GaInP层蚀刻得更快,使得尾部变小,半导体激光器件的远场图案不会紊乱, 并且不发生光轴偏移。
摘要:
It is an objective to control the occurrence of the disorder of a far-field pattern and of an optical axial shift. A manufacturing method of a semiconductor laser device has the step for preparing a semiconductor substrate which has growth of a multi-layer including an active layer, the step for forming a mask over the growth of a multi-layer, and a step for forming a stripe-shaped ridge by dry etching and wet etching. A structure stacking a p-type AlGaInP layer, an etch-stop layer, a p-type Alx=0.7GaInP layer, a p-type Alx=0.6GaInP layer, a p-type GaAs layer, in order, over the active layer is taken in order to make the tailing part created in the dry etching process smaller by wet etching. The tailing part is composed of a p-type Alx=0.7GaInP layer including a high mixed crystal ratio of aluminum. Therefore, the p-type Alx=0.7GaInP layer is etched faster than the p-type Alx=0.6GaInP layer during wet etching, so that the tailing part becomes smaller, the far-field pattern of the semiconductor laser device is not disordered, and the optical axis shift does not occur.
摘要翻译:目的是控制远场图案和光轴向偏移的发生。 半导体激光器件的制造方法具有制备半导体衬底的步骤,该半导体衬底具有包括有源层的多层的生长,用于在多层生长上形成掩模的步骤,以及用于形成 通过干蚀刻和湿蚀刻形成条形脊。 堆叠p型AlGaInP层,蚀刻停止层,p型Al x = 0.7 GaInP层,p型Al x = 0.6 GaInP的结构 层,p型GaAs层,依次在有源层上,以使得在干式蚀刻工艺中产生的拖尾部分通过湿蚀刻较小。 尾部由包含铝的高混合比的p型Al x = 0.7 GaInP层构成。 因此,在湿蚀刻期间,p型Al x = 0.7 GaInP层比p型Al x = 0.6 GaInP层蚀刻得更快,使得尾部变成 较小的半导体激光器件的远场图案不会发生紊乱,并且不发生光轴偏移。
摘要:
An opto-semiconductor device. An opto-semiconductor element includes a semiconductor substrate, a multilayered semiconductor layer formed on a first surface of the semiconductor substrate and having a resonator, a first electrode with multiple conductive layers formed on the multilayered semiconductor layer, and a second electrode formed on a second surface of the semiconductor substrate. A support substrate has a first surface formed with a fixing portion having a conductive layer for fixing the first electrode connected thereto through a bonding material. Bonding material and conductive layers forming the first electrode react to form a reaction layer. The difference in thermal expansion coefficient between semiconductor substrate and support substrate is not more than ±50%. A second barrier metal layer not reactive with bonding material is formed inside the first electrode uppermost conductive layer, while uppermost layer reacts with the bonding material to form the reaction layer.